Potential Role of Halophile in Crude Glycerol Based Biorefinery

  • Noopur Singh
  • Rukmini Roy
  • Swapna K. Srivastava
  • Bijan Choudhury
Chapter
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 4)

Abstract

Biorefinery includes microbial fermentation processes which could utilize glycerol as raw material for the production of bio-derived building block compounds and polymers. The recent expansion in biodiesel market has resulted in a remarkable transformation in availability and subsequent cost of glycerol, which is generated at 10% of total biodiesel produced. Being produced in excess, crude glycerol price has suffered a major decline, thereby affecting the economics of biodiesel industry. Purification of crude glycerol for use in cosmetics and pharmaceutical industry increases the production cost and hence not considered as a viable option for disposal of such huge amount of glycerol, which also poses an environmental concern. Thus the crude glycerol based refinery concept is being explored whose objective should be to actualize technologies for valorization of waste glycerol. The major challenge thwarting the development of such biorefinery is obtaining microbial strains tolerant of crude glycerol along with its impurities. However, concentrated crude glycerol has rarely been used for microbial conversion to value-added products. High usage of portable water is required to dilute concentrated crude glycerol for crude glycerol based biorefinery. In this chapter, the recent attempts to explore microbial assimilation of glycerol has been summarized. Besides how halophiles can be considered as a viable alternative for valorization of crude glycerol is presented.

Keywords

Crude glycerol Halophiles Biorefinery 

References

  1. Andre A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crops Prod 31(2):407–416CrossRefGoogle Scholar
  2. Anupama S, Sanjiv KM, Bhumi S, Imran P, Deepti J, Sandhya M (2010) Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol 47(2):283–287CrossRefGoogle Scholar
  3. Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energy Rev 16:2671–2686CrossRefGoogle Scholar
  4. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2007) Improved utilization of renewable resources: new important derivatives of Glycerol. Green Chem 10(1):1463–9262Google Scholar
  5. Burns DG, Janssen PH, Itoh T (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Micr 57(2):387–392Google Scholar
  6. Campos MI, Tamiris VBF, Luciane SS, Janice Izabel D (2014) The influence of crude glycerin and nitrogen concentrations on the production of PHA by Cupriavidus necator using a response surface methodology and its characterization. Ind Crops Prod 52:338–346CrossRefGoogle Scholar
  7. Carvalho M, Matos M, Roca C, Reis MA (2014) Succinic acid production from succinogenes using dimethyl sulfoxide as electron acceptor. N. Biotechnol 31(1):133–139CrossRefGoogle Scholar
  8. Cavalheiro JMBT, De Almeida M, Grandfils C, Da Fonseca M (2009) Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRefGoogle Scholar
  9. Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36(2):1097–1108CrossRefGoogle Scholar
  10. Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescen. Appl Microbiol Biotechnol 89(4):1255–1264CrossRefGoogle Scholar
  11. Cui Y, Blackburn JW, Liang Y (2012) Fermentation optimization for the production of lipid by Cryptococcus curvatus: use of response surface methodology. Biomass Bioenerg 47:410–417CrossRefGoogle Scholar
  12. DasSarma S, DasSarma P (2012) Halophiles. Wiley, Chichester. doi:10.1002/9780470015902.a0000394
  13. Dobroth ZT, Hu S, Coats ER, Mc Donald AG (2011) Polyhydroxybutyrate synthesis in biodiesel wastewater using mixed microbial consortia. Biores Technol 102(3):3352–3359CrossRefGoogle Scholar
  14. Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly-(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomat Sci Polym E 17(12):1425–1438CrossRefGoogle Scholar
  15. Donkin SS (2008) Glycerol from biodiesel production: the new corn for dairy cattle. Rev Bras Zootec 37:280–286CrossRefGoogle Scholar
  16. Dorman DC, Nassise MP, Ekuta J, Bolon B, Medinsky MA (1993) Acute methanol toxicity in minipigs. Fundam Appl Toxicol 20(3):341–347CrossRefGoogle Scholar
  17. Duarte SH, Ghiselli S, Maugeri F (2013) Influence of culture conditions on lipid production by Candida sp. LEB-M3 using glycerol from biodiesel synthesis. Biocatal Agric. Biotechnol 2(4):339–343Google Scholar
  18. Fakas S, Papanikolaou S, Batsos A, Galiotou Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenerg 33(4):573–580CrossRefGoogle Scholar
  19. Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep 9:9–14CrossRefGoogle Scholar
  20. Guillaume SP, Patrick CH (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Biores Technol 100(14):3513–3517CrossRefGoogle Scholar
  21. Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Yanagishita H (2009) Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl. Environ. Microb. 75(24):7760–7766CrossRefGoogle Scholar
  22. Han J, Hou J, Liu H (2010) Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microb 76(23):7811–7819CrossRefGoogle Scholar
  23. Hezayen FF, Tindall BJ, Steinbuchel A (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Micr 52(6):2271–2280Google Scholar
  24. Hezayen FF, Gutierrez MC, Steinbuchel A (2010) Halopiger aswanensis sp. nov., a polymer-producing and extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Micr 60(3):633–637Google Scholar
  25. Hong AA, Cheng KK, Peng F, Zhou S, Sun Y, Liu CM, Liu DH (2009) Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biotechnol 84(10):1576–1581CrossRefGoogle Scholar
  26. Ibrahim MHA, Steinbuchel A (2009) Poly (3-Hydroxybutyrate) production from glycerol by Zobellella denitrifican MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75(19):6222–6231CrossRefGoogle Scholar
  27. Jitrwung R, Yargeau V (2011) Optimization of media composition for the production of biohydrogen from waste glycerol. Int J Hydrogen Energy 36(16):9602–9611CrossRefGoogle Scholar
  28. Kaeata Y, Aiba S (2010) Poly (3-hydroxybutyrate) production by isolated Halomonas sp. KM-1 using waste glycerol. Biosci Biotechnol Biochem 74(1):175–177CrossRefGoogle Scholar
  29. KenJer W, Yeuh Hui L, Yung Chung L, Chun Yen C, Wen Ming C, Jo Shu C (2011) Converting glycerol into hydrogen, ethanol, and diols with a Klebsiella sp. HE1 strain via anaerobic fermentation. J Taiwan Inst Chem Eng 42(1):20–25Google Scholar
  30. Kerr BJ, Dozier WA, Bregendahl K (2007) Nutritional value of crude glycerin for nonruminants. In: Proceedings of the 23rd Annual Carolina Swine Nutrition Conference, Raleigh NC, pp. 6–18Google Scholar
  31. Khan A, Bhide A, Gadre R (2009) Mannitol production from glycerol by resting cells of Candida magnoliae. Biores Technol 100(20):4911–4913CrossRefGoogle Scholar
  32. Kitcha S, Cheirslip B (2013) Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts: strain selection, process optimization, and fed-batch strategy. Bioenergy Res 6(1):300–310CrossRefGoogle Scholar
  33. Anniina K, Ville S, Matti K (2010) Hydrogen production from glycerol using halophilic fermentative bacteria. Biores Technol 101(22):8671–8677CrossRefGoogle Scholar
  34. Kivisito A, Santala V, Karp M (2012) 1,3-propanediol production and tolerance of a halophilic fermentative bacterium, Halanaerobium saccharolyticum subsp. saccharolyticum. J Biotechnology 158(4):242–247CrossRefGoogle Scholar
  35. Koganti S, Kuo TM, Kurtzman CP, Smith N, Ju LK (2011) Production of arabitol from glycerol: and study of factors affecting production yield. Appl Microbiol Biotechnol 90(1):257–267CrossRefGoogle Scholar
  36. kovcas A (2011) Aspects of refining biodiesel byproduct glycerin. Pet Coal 53(1):91–97Google Scholar
  37. Legat A, Gruber C, Zangger K (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biot 87(3):1119–1127CrossRefGoogle Scholar
  38. Lemoigne M (1926) Produits de dehydration et de polymerisation de l’Acide ß-oxobutyrique. Bull. Soc. Chim. Biol. 8:770–782Google Scholar
  39. Leoneti AB, Aragao Leoneti V, de Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145Google Scholar
  40. Liang YN, Sarkany N, Cui Y, Blackburn JW (2010) Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Biores Technol 101(7):6745–6750CrossRefGoogle Scholar
  41. Lillo JG, Rodriguez V (1990) Effects of culture conditions on poly(β- hydroxybutyric) acid production by Haloferax mediterranei. Appl Environ Microb 56(8):2517–2521Google Scholar
  42. Malaviya A, Jang YS, Lee SY (2012) Continuous butanol production with reduced byproducts glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol 93(4):1485–1494CrossRefGoogle Scholar
  43. Marques PASS, Bartolomeu ML, Thomas MM, Neves LM (2009) Biohydrogen production from glycerol by a strain of Enterobacter aerogenes. In: Proceeding of Hypothesis VIII 2009 1–3 April Lisbon, PortugalGoogle Scholar
  44. McLea L, Ball MEE, Kilpatrick D, Elliott C (2011) The effect of glycerol inclusion on broiler performance and nutrient digestibility. Br Poult Sci 52(3):368–375CrossRefGoogle Scholar
  45. Mezghani M, Alazard D, Karray F, Cayol JL, Joseph M, Postec A, Fardeau ML, Tholozan JL, Sayadi S (2012) Halanerobacter jeridensis sp. nov., isolated from a hypersaline lake. IJSEM 62(Pt 8):1970–1973Google Scholar
  46. Mormile MR, Roush DW, Elias DA, Sitton OC (2015) Conversion of glycerol to 1,3 propanediol under haloalkaline conditions. WO2015035266A1Google Scholar
  47. Mothes G, Schnorpfeil C, Ackermann JU (2007) Production of PHB from crude glycerol. Eng Life Sci 7(5):475–479CrossRefGoogle Scholar
  48. Nicolaus B, Lama L, Esposito E (1999) Haloarcula spp. able to biosynthesize exo and endopolymers. J Ind Microbiol Biot 23(6):489–496Google Scholar
  49. Nieto JJ, Fernandez Castillo R, Marquez MC, Ventosa A, Quesada E, Ruiz Berraquero F (1989) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55(9):2385–2390Google Scholar
  50. Nuppatol T, Jian Y (2012) Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenensis, molecular weight and material properties of biopolyesters. Biotechnol Bioeng 109(11):2808–2818CrossRefGoogle Scholar
  51. Oh BR, Seo JW, Choi MH, Kim CH (2008) Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumonia using response surface methodology. Biotechnol Bioprocess Eng 13:666–670CrossRefGoogle Scholar
  52. Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Systems 1(2):1–14Google Scholar
  53. Oren A, Gurevich P (1994) Distribution of glycerol dehydrogenase and glycerol kinase activity in halophilic archaea. FEMS Microb Lett 118(3):311–315CrossRefGoogle Scholar
  54. Pagliaro M, Rossi M (2008) The future of glycerol: new usages for a versatile raw material. RSC Green Chemistry Series. ISBN:978-0-85404-124-4: 1-127Google Scholar
  55. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) From glycerol to value-added products. Wiley Chem. Int. Ed. 46(24):4434–4440CrossRefGoogle Scholar
  56. Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21(4):83–87CrossRefGoogle Scholar
  57. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl-esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32(1):60–71CrossRefGoogle Scholar
  58. Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumonia G31 Microbiol. Biotechnol 84(4):659–665Google Scholar
  59. Poli JS, Da Silva MAN, Siqueira EP, Pasa VMD, Rosa CA, Valente P (2014) Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. Biores Technol 161:320–326CrossRefGoogle Scholar
  60. Quillaguaman J, Guzman H, Van Thuoc D (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biot 85(6):1687–1696CrossRefGoogle Scholar
  61. Rehman AU, Matsumura M, Nomura N, Sato S (2008) Growth production on pre-treated sunflower oil biodiesel raw glycerol using a strict anaerobe Clostridium butyricum. Curr. Res. Bacteriol 1(1):7–16CrossRefGoogle Scholar
  62. Rivaldi JD, Sarrouh BF, da Silva SS (2009) Development of biotechnological processes using glycerol from biodiesel production. Curr Res Top Appl Microbiol Microb Biotechnol. doi:10.1142/97898128375540089 Google Scholar
  63. Romano I, Poli A, Finore I (2007) Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Micr 57(7):1499–1503Google Scholar
  64. Roush DW, Mormile MR, Elias DA, Sitton OC (2013) Production of 1,3 propanediol from glycerol under haloalkaline conditions. Masters Theses, Paper, p 5441Google Scholar
  65. Rymowicz W, Rywinska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol cultures of Yarrowia lipolytica. Biotechnol Lett 31(3):377–380CrossRefGoogle Scholar
  66. Rymowicz W, Fatykhova AR, Kamzolova SV, Rywinska A, Morgunov IG (2010) Citric Acid production from glycerol containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl. Microbiol. Biotechnol 87(3):971–979Google Scholar
  67. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46(1):210–218CrossRefGoogle Scholar
  68. Santamauro F, Whiffin FM, Scott RJ, Chuck CJ (2014) Low cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnology Biofuels 7(1):34–40CrossRefGoogle Scholar
  69. Sattayasamitsathita S, Prasertsana P, Methacanon P (2011) Statistical optimization for simultaneous propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Proc. Biochem 46(2):608–614CrossRefGoogle Scholar
  70. Saurabh JS, Satinder KB, Eduardo BS, Yann LB, Gerardo B, Carlos RS (2012) Microbial hydrogen production by bioconversion of crude glycerol: A review international journal of hydrogen energy 37(8): 6473–6490Google Scholar
  71. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913CrossRefGoogle Scholar
  72. Sereshki BR, Balan SJ, Patience GS, Dubois JL (2010) Reactive vaporization of crude glycerol in a fluidized bed reactor. Ind Eng Chem Res 49:1050–1056CrossRefGoogle Scholar
  73. Singhabhandhu A, Tezuka T (2010) A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy 35(6):2493–2504CrossRefGoogle Scholar
  74. Szymanowska Powałowska D, Leja K (2014) An increasing of the efficiency of microbiological propanediol from crude glycerol by the concentration of biomass. Electron J Biotechnol 17(2):72–78CrossRefGoogle Scholar
  75. Tchakouteu SS, Kalantzi O, Chr Gardeli AA, Koutinas G, Aggelis and Papanikolaou S (2015) Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118(4): 911–927Google Scholar
  76. VanThuoc D, HuuPhong T, MinhKhuong D, HattiKaul R (2015) Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175(6):3120–32 Google Scholar
  77. Waino M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the archaea from Great Salt Lake, Utah. Int J Syst Evol Micr 50(1):183–190Google Scholar
  78. Wen Z, Pyle DJ Athalye SK (2009a) Microbial conversions of raw glycerol. Nova Science Publishers Inc, New York. ISBN: 9781617280153: 1-7Google Scholar
  79. Yang X, Guomin X, Arvind V (2013) A universal procedure for crude glycerol purification from different feedstocks in biodiesel production: experimental and simulation study. Ind Eng Chem Res 52(39):14291–14296CrossRefGoogle Scholar
  80. Xu XW, Ren PG, Liu SJ (2005) Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, China. Int J Syst Evol Micr 55(3):1311–1314Google Scholar
  81. Xu J, Zhao X, Wang W, Du W, Liu D (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36CrossRefGoogle Scholar
  82. Yang F, Hanna MA, Sun R (2012) Value added uses for crude glycerol a byproduct of biodiesel production. Biotechnol Biofuels 5(13):13–23CrossRefGoogle Scholar
  83. Yang X, Jin G, Gong Z, Shen H, Bai F, Zhao ZK (2014) Recycling biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the two-stage lipid production process. Biochem Eng J 91:86–91CrossRefGoogle Scholar
  84. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219CrossRefGoogle Scholar
  85. Zhang YHP (2007) What is vital (and not vital) to advance economically competitive biofuels production. Process Biochem 46(11):2091–2110CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Noopur Singh
    • 1
  • Rukmini Roy
    • 1
  • Swapna K. Srivastava
    • 1
  • Bijan Choudhury
    • 1
  1. 1.Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations