Skip to main content

Simultaneous Saccharification and Fermentation of Lignocellulosic Biomass

  • Chapter
  • First Online:
Biorefining of Biomass to Biofuels

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 4))

Abstract

In recent years, with the growing concerns over the depletion of natural resources and food security, researchers are focusing on abundantly available non-food crops such as lignocellulosic biomass as alternative reserves for bioenergy. Since lignocellulosic biomass are a rich source of carbohydrates they can be used to produce various biological products through different fermentation strategies such as separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF) along with consolidated bioprocessing (CBP). Among these, SSF has increased popularity for its cost-effectiveness and high product yield. The major advantages of SSF over SHF are the reduction in end product inhibition during saccharification, use of a single reactor for its operation and utilization of various lignocellulosic substrates under different pretreatment conditions that result in high product yield in short incubation time. However, certain drawbacks exist in SSF such as negotiation with the process parameters mainly temperature and pH; inability to utilize pentoses and low ethanol tolerance of fermenting strains. To overcome these limitations the authors are trying to emphasize a consolidated bioprocessing approach for utilization of pentoses and hexoses for improved bioenergy and other value-added product generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avanthi A, Kumar S, Sherpa KC, Banerjee R (2016) Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels. doi:10.1080/17597269.2016.1249738

  • Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organism. Biotechnol Prog 15:867–875

    Article  Google Scholar 

  • Cannella D, Jorgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111:59–68

    Article  Google Scholar 

  • Chen Y (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J Ind Microbiol Biotechnol 38(5):581–597

    Article  Google Scholar 

  • Chintagunta AD, Jacob S, Banerjee R (2015) Integrated bioethanol and biomanure production from potato waste. Waste Management doi:10.1016/j.wasman.2015.08.010

  • Ding X, Huang L, Zhang N, Zhao D, Yang K, Zhang (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85(2):253–263

    Article  Google Scholar 

  • Edgardo A, Carolina P, Manuel R, Juanita F, Jaime B (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Technol 43:120–123

    Article  Google Scholar 

  • Ghosh D, Dasgupta D, Agrawal D, Kaul S, Adhikari DK, Kurmi AK, Arya PK, Bangwal D, Negi MS (2015) Fuels and chemicals from lignocellulosic biomass: an integrated biorefinery approach. Energy Fuels 29:3149–3157

    Article  Google Scholar 

  • Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30(6):1207–1218

    Article  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50(4):484–524

    Google Scholar 

  • Keis S, Shaheen R, Jones TD (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103

    Article  Google Scholar 

  • Kitagaki H, Araki Y, Funato K, Shimoi H (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581:2935–2942

    Article  Google Scholar 

  • Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  • Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI J 10:85–96

    Google Scholar 

  • Larsson S, Cassland P, Jonsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulosic hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  Google Scholar 

  • Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H (2012) Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47:395–401

    Google Scholar 

  • Linger JG, Darzins AL (2013) Consolidated bioprocessing. In Lee JW (ed) Advanced biofuels and bioproducts. Springer Science + Business Media, New York. doi:10.1007/978-1-4614-3348-4_16

  • Liu ZH, Chen HZ (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Biores Technol 201:15–26

    Article  Google Scholar 

  • Mbaneme-Smith V, Chinn MS (2014) Consolidated bioprocessing for biofuel production: recent advances. Energy Emission Control Technol 2015(3):23–44

    Google Scholar 

  • Meinander NQ, Hahn-Hagerdal B (1997) influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubsrates. Appl Environ Microbiol 63:1959–1964

    Google Scholar 

  • Mukhopadhyay M, Kuila A, Tuli DK, Banerjee R (2011) Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass Bioenerg 35:3584–3591

    Article  Google Scholar 

  • Muller G, Kalyani DC, Horn SJ (2016) LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass. Biotechnol Bioeng 9999:1–8

    Google Scholar 

  • Ohgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839

    Article  Google Scholar 

  • Okamoto K, Uchii A, Kanawaku R, Yanase H (2014) Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. SpringerPlus 3:121

    Article  Google Scholar 

  • Rajak RC, Banerjee R (2015) Enzymatic delignification: an attempt for lignin degradation from lignocellulosic feedstock. RSC Adv 5:75281–75291

    Article  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase Production by Bacteria: A Review. Br Microbiol Res J 3:235–258

    Article  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol 99:5270–5295

    Article  Google Scholar 

  • Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32:422–430

    Article  Google Scholar 

  • Shields S, Boopathy R (2011) Ethanol production from lignocellulosic biomass of energy cane

    Google Scholar 

  • Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2011) Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank bioreactor. Braz J Chem Eng 28(01):151–156

    Article  Google Scholar 

  • Su H, Liu G, He M, Tan F (2015) A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse. Biores Technol 187:149–160

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83:1–11

    Article  Google Scholar 

  • Suriyachai N, Weerasaia K, Laosiripojana N, Champreda V, Unrean P (2013) Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Biores Technol 142:171–178

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(4):707–738

    Google Scholar 

  • Taherzadeh MJ, Millati R, Niklasson C (2001) Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae. Appl Biochem Biotechnol 95:45–57

    Article  Google Scholar 

  • Taherzadeh MJ, Niklasson C, Liden G (2000) On-line control of fed-batch fermentation of dilute-acid hydrolyzates. Biotechnol Bioeng 69:330–338

    Article  Google Scholar 

  • Vincent M, Pometto AL, van Leeuwen JH (2011) Simultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011. J Microbiol Biotechnol 21(7):703–710

    Article  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, Chichester

    Google Scholar 

  • Wu A, Lee YY (1988) Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol. Appl Biochem Biotechnol 70–72:479–492

    Google Scholar 

  • Wyman CE (1996) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, DC

    Google Scholar 

  • Zahid A, Muhammad G, Muhammad I (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiation Res Appl Sci 7:163–173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintu Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Althuri, A., Chintagunta, A.D., Sherpa, K.C., Banerjee, R. (2018). Simultaneous Saccharification and Fermentation of Lignocellulosic Biomass. In: Kumar, S., Sani, R. (eds) Biorefining of Biomass to Biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67678-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67677-7

  • Online ISBN: 978-3-319-67678-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics