Abstract
In this paper, we present a multi-modal medical image classification framework classifying brain tumor glioblastomas in genetic classes based on DNA methylation status. The framework makes use of computationally efficient 3D implementations of short local image descriptors, such as LBP, BRIEF and HOG, which are processed by a Bag-of-Patterns model to represent image regions, as well as deep-learned features acquired by denoising auto-encoders and hand-crafted shape features calculated on segmentation masks. The framework is validated against a cohort of 116 brain tumor patients from the TCIA database and is shown to obtain high accuracies even though the same image-based classification task is hardly possible for medical experts.
Keywords
- Medical Image Classification
- Describe Image Regions
- Autoencoder (AE)
- BRIEF Features
- Brain Tumor Dataset
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
Intel® Xeon® Processor E3-1225 v3.
- 3.
GeForce GTX Titan X (VRAM 12 GB).
References
Wiestler, B., Capper, D., Sill, M., et al.: Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol. 128, 561–571 (2014)
Paul, A., Dey, A., Mukherjee, D.P., Sivaswamy, J., Tourani, V.: Regenerative random forest with automatic feature selection to detect mitosis in histopathological breast cancer images. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 94–102. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_12
Otálora, S., et al.: Combining unsupervised feature learning and riesz wavelets for histopathology image representation: application to identifying anaplastic medulloblastoma. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 581–588. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_71
Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_80
Levner, I., Drabycz, S., Roldan, G., Robles, P., Cairncross, J.G., Mitchell, R.: Predicting MGMT methylation status of glioblastomas from MRI texture. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 522–530. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04271-3_64
Lian, C., Ruan, S., Denœux, T., Li, H., Vera, P.: Dempster-shafer theory based feature selection with sparse constraint for outcome prediction in cancer therapy. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 695–702. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_83
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 20(2), 91–110 (2004)
Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation-invariant texture classification with local binary patterns. IEEE Trans. Pattern. Anal. Mach. Intell. 24, 971–987 (2002)
Calonder, M., Lepetit, V., Ozuysal, M., et al.: BRIEF: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2012)
Chen, X., Xu, Y., Yan, S., Chua, T.-S., Wong, D.W.K., Wong, T.Y., Liu, J.: Discriminative feature selection for multiple ocular diseases classification by sparse induced graph regularized group lasso. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 11–19. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_2
Banerjee, J., Moelker, A., Niessen, W.J., Walsum, T.: 3D LBP-based rotationally invariant region description. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 26–37. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37410-4_3
Heinrich, M.P., Blendowski, M.: Multi-organ segmentation using vantage point forests and binary context features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 598–606. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_69
Kläser, A., Marszalek, M., Schmid, C.: A Spatio-Temporal Descriptor based on 3d-Gradients. In: BMVC (2008)
Csurka, G., Bray, C., Dance, C., et al.: Visual Categorization with Bags of Keypoints. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)
Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)
Menze, B.H., et al.: A generative probabilistic model and discriminative extensions for brain lesion segmentation - with application to tumor and stroke. IEEE Trans. Med. Imaging 35(4), 933–946 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Alberts, E. et al. (2017). Multi-modal Image Classification Using Low-Dimensional Texture Features for Genomic Brain Tumor Recognition. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-67675-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67674-6
Online ISBN: 978-3-319-67675-3
eBook Packages: Computer ScienceComputer Science (R0)