Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1057 Accesses

Abstract

In this chapter we outline the key implementation aspects of exploiting discontinuous Galerkin finite element methods on general computational meshes consisting of polytopic elements: mesh generation, construction of the elemental polynomial basis, and numerical integration. We also present some numerical examples to highlight the sharpness of the a priori error bounds derived in this volume for both a steady advection-diffusion-reaction problem and a (degenerate) parabolic problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.F. Antonietti, S. Giani, P. Houston, hp-Version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35(3), A1417–A1439 (2013)

    Google Scholar 

  2. P.F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E.H. Georgoulis, S. Giani, P. Houston, Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, ed. by G.R. Barrenechea, F. Brezzi, A. Cangiani, E.H. Georgoulis (Springer International Publishing, Cham, 2016), pp. 281–310

    Chapter  Google Scholar 

  3. P.F. Antonietti, P. Houston, G. Pennesi, Fast evaluation of DGFEMs on polytopic meshes (2017, in preparation)

    Google Scholar 

  4. D.N. Arnold, D. Boffi, R.S. Falk, L. Gastaldi, Finite element approximation on quadrilateral meshes. Commun. Numer. Meth. Eng. 17(11), 805–812 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.N. Arnold, D. Boffi, R.S. Falk, Approximation by quadrilateral finite elements. Math. Comput. 71(239), 909–922 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Bassi, L. Botti, A. Colombo, S. Rebay, Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations. Comput. Fluids 61, 77–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Bassi, L. Botti, A. Colombo, Agglomeration-based physical frame dG discretizations: an attempt to be mesh free. Math. Models Methods Appl. Sci. 24(8), 1495–1539 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Cangiani, E.H. Georgoulis, P. Houston, hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)

    Google Scholar 

  10. A. Cangiani, Z. Dong, E.H. Georgoulis, P. Houston, hp-Version discontinuous Galerkin methods for advection–diffusion–reaction problems on polytopic meshes. ESAIM Math. Model. Numer. Anal. 50(3), 699–725 (2016)

    Google Scholar 

  11. A. Cangiani, Z. Dong, E.H. Georgoulis, hp-Version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39(4), A1251–A1279 (2017)

    Google Scholar 

  12. E.B. Chin, J.B. Lasserre, N. Sukumar, Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Comput. Mech. 56(6), 967–981 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Demkowicz, in Computing withhp-Adaptive Finite Elements: One and Two Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, vol. 1 (Chapman & Hall/CRC, Boca Raton, FL, 2007)

    Google Scholar 

  14. M.G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19(6), 1260–1262 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. D.A. Dunavant, High-degree efficient symmetric Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. M.S. Ebeida, S.A. Mitchell, Uniform random Voronoi meshes, in Proceedings of the 20th International Meshing Roundtable, ed. by W.R. Quadros (Springer, Berlin/Heidelberg, 2012), pp. 273–290

    Google Scholar 

  17. W. Hackbusch, S.A. Sauter, Composite finite elements for problems containing small geometric details. Part II: implementation and numerical results. Comput. Vis. Sci. 1, 15–25 (1997)

    MATH  Google Scholar 

  18. W. Hackbusch, S.A. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75, 447–472 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Houston, C. Schwab, E. Süli, Stabilized hp-finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal. 37(5), 1618–1643 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Johansson, M.G. Larson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123(4), 607–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.E. Karniadakis, S. Sherwin, Spectral/hpFinite Element Methods in CFD (Oxford University Press, Oxford, 1999)

    MATH  Google Scholar 

  22. G. Karypis, V. Kumar, A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

    Article  MATH  Google Scholar 

  23. J.B. Lasserre, Integration on a convex polytope. Proc. Am. Math. Soc. 126(8), 2433–2441 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. S.E. Mousavi, N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47(5), 535–554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.E. Mousavi, H. Xiao, N. Sukumar, Generalized Gaussian quadrature rules on arbitrary polygons. Int. J. Numer. Methods Eng. 82(1), 99–113 (2010)

    MathSciNet  MATH  Google Scholar 

  26. C. Schwab, p- andhp-Finite element methods: Theory and Applications in Solid and Fluid Mechanics (Oxford University Press, Oxford, 1998)

    MATH  Google Scholar 

  27. J.R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, in Applied Computational Geometry: Towards Geometric Engineering, ed. by M.C. Lin, D. Manocha. Lecture Notes in Computer Science, vol. 1148 (Springer, Berlin/Heidelberg, 1996), pp. 203–222. From the First ACM Workshop on Applied Computational Geometry

    Google Scholar 

  28. H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015)

    Google Scholar 

  29. P. Solin, K. Segeth, I. Dolezel, in Higher-Order Finite Element Methods. Studies in Advanced Mathematics (Chapman & Hall/CRC, Boca Raton, London, 2004)

    Google Scholar 

  30. A. Sommariva, M. Vianello, Product Gauss cubature over polygons based on Green’s integration formula. BIT Numer. Math. 47(2), 441–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes, Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Warburton, Spectral/hp-methods on polymorphic multi-domains: algorithms and applications, PhD thesis, Brown University, 1999

    Google Scholar 

  33. H. Xiao, Z. Gimbutas, A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput. Math. Appl. 59(2), 663–676 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P. (2017). Implementation Aspects. In: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-67673-9_6

Download citation

Publish with us

Policies and ethics