Lime and Hemp or Rice Husk Concretes for the Building Envelope: Applications and General Properties

  • Morgan Chabannes
  • Eric Garcia-Diaz
  • Laurent Clerc
  • Jean-Charles Bénézet
  • Frédéric Becquart
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Hemp concrete is obtained from the mix of hemp shiv, water and a mineral binder (which can be itself a mixture of different binders).

References

  1. 1.
    C. en Chanvre, Constuire en Chanvre. Règles professionnelles d’éxécution (SEBTP. Société d’Édition du Bâtiment et des Travaux Publics, 2012)Google Scholar
  2. 2.
    S. Amziane, L. Arnaud, Les bétons de granulats d’origine végétale. Application au béton de chanvre (Lavoisier, France, 2013)Google Scholar
  3. 3.
    M. Chabannes, Formulation et étude des propriétés mécaniques d’agrobétons légers isolants à base de balles de riz et de chènevotte pour l’éco-construction (University of Montpellier, France, 2015), p. 215Google Scholar
  4. 4.
    L. Arnaud, E. Gourlay, Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 28(1), 50–56 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Gross, P. Walker, Racking performance of timber studwork and hemp-lime walling. Constr. Build. Mater. 66, 429–435 (2014)CrossRefGoogle Scholar
  6. 6.
    P. Tronet, T. Lecompte, V. Picandet, C. Baley, Study of lime hemp composite precasting by compaction of fresh mix—An instrumented die to measure friction and stress state. Powder Technol. 258, 285–296 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Tronet, T. Lecompte, V. Picandet, C. Baylet, Study of lime and hemp concrete (lhc)—Mix design, casting process and mechanical behaviors. Cem. Concr. Compos. 67, 60–72 (2016)CrossRefGoogle Scholar
  8. 8.
    T.M. Dinh, Contribution au développement du béton de chanvre préfabriqué utilisant un liant pouzzolanique innovant, Ph.D. Thesis, Toulouse 3 University (Paul Sabatier), France, p. 211, 2014Google Scholar
  9. 9.
    A. Evrard, Transient hygrothermal behaviour of Lime-Hemp Materials, Ph.D. Thesis, Catholic University of Louvain, Belgium, p. 140, 2008Google Scholar
  10. 10.
    V. Nozahic, Vers une nouvelle démarche de conception des bétons végétaux lignocellulosiques basée sur la compréhension et l’amélioration de l’interface Liant/Végétal. Application à des granulats de chènevotte et de tige de tournesol associés à un liant ponce/chaux, Ph.D. Thesis, Clermont University, France, p. 311, 2012Google Scholar
  11. 11.
    T.T. Nguyen, Contribution à l’étude de la formulation et du procédé de fabrication d’éléments de construction en béton de chanvre, Ph.D. Thesis, Bretagne-Sud University, France, p. 167, 2010Google Scholar
  12. 12.
    N. Yüksel, The review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials, in Insulation Materials in Context of Sustainability (InTech, 2016), pp. 113–140Google Scholar
  13. 13.
    M. Li, H. Zhang, Y. Ju, Design and construction of a guarded hot plate apparatus operating down to liquid nitrogen temperature. Rev. Sci. Instrum. 83(7) (2012)Google Scholar
  14. 14.
    F. Collet, S. Pretot, Thermal conductivity of hemp concretes: variation with formulation, density and water content. Constr. Build. Mater. 65, 612–619 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Coquard, D. Baillis, D. Quenard, Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators. Int. J. Heat Mass Transf. 49(23–24), 4511–4524 (2006)CrossRefGoogle Scholar
  16. 16.
    V. Cerezo, Propriétés mécaniques , thermiques et acoustiques d’un matériau à base de particules végétales : approche expérimentale et modélisation théorique, Ph.D. Thesis, École Nationale des Travaux Publics de l’État, Lyon, France, p. 243, 2005Google Scholar
  17. 17.
    J. Chamoin, Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation, Ph.D. Thesis, Rennes 1 University, INSA Rennes, France, p. 198, 2013Google Scholar
  18. 18.
    M. Ghafghazi, D. Shuttle, Confidence and accuracy in determination of the critical state friction angle. Soils Found. 49(3), 391–395 (2009)CrossRefGoogle Scholar
  19. 19.
    F. Becquart, F. Bernard, N.E. Abriak, R. Zentar, Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction. Waste Manag 29(4), 1320–1329 (2009)CrossRefGoogle Scholar
  20. 20.
    P. Glé, E. Gourdon, L. Arnaud, Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 72(5), 249–259 (2011)CrossRefGoogle Scholar
  21. 21.
    F. Collet, M. Bart, L. Serres, J. Miriel, Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater. 22(6), 1271–1280 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Elfordy, F. Lucas, F. Tancret, Y. Scudeller, L. Goudet, Mechanical and thermal properties of lime and hemp concrete (‘hempcrete’) manufactured by a projection process. Constr. Build. Mater. 22(10), 2116–2123 (2008)CrossRefGoogle Scholar
  23. 23.
    A. Mukherjee, C. MacDougall, Structural benefits of hempcrete infill in timber stud walls. Int. J. Sustain. Build. Technol. Urban Dev. 4(4), 295–305 (2013)CrossRefGoogle Scholar
  24. 24.
    D. Sedan, Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment. Influence sur les propriétés mécaniques du composite, Groupe d’étude des Matériaux Hétérogènes, Ph.D. Thesis, Limoges University, France, p. 129, 2007Google Scholar
  25. 25.
    R. Walker, S. Pavía, Effect of Hemp’S soluble components on the physical properties of Hemp concrete. J. Mater. Sci. Res. 3(3), 12–23 (2014)Google Scholar
  26. 26.
    Y. Diquélou, E. Gourlay, L. Arnaud, B. Kurek, Impact of hemp shiv on cement setting and hardening: influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix. Cem. Concr. Compos. 55, 112–121 (2014)CrossRefGoogle Scholar
  27. 27.
    V.D. Pizzol, L.M. Mendes, L. Frezzatti, H. Savastano, G.H.D. Tonoli, Effect of accelerated carbonation on the microstructure and physical properties of hybrid fiber-cement composites. Miner. Eng. 59, 101–106 (2014)CrossRefGoogle Scholar
  28. 28.
    V.D. Pizzol, L.M. Mendes, H. Savastano, M. Frías, F.J. Davila, M.A. Cincotto, V.M. John, G.H.D. Tonoli, Mineralogical and microstructural changes promoted by accelerated carbonation and ageing cycles of hybrid fiber–cement composites. Constr. Build. Mater. 68, 750–756 (2014)Google Scholar
  29. 29.
    J. Lanas, J.L.P. Bernal, M. Bello, J.I. Galindo, Mechanical properties of natural hydraulic lime-based mortars. Cem. Concr. Res. 34, 2191–2201 (2004)CrossRefGoogle Scholar
  30. 30.
    S. Asavapisit, G. Fowler, C. Cheeseman, Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cem. Concr. Res. 27(8), 1249–1260 (1997)CrossRefGoogle Scholar
  31. 31.
    P. Turcry, L. Oksri-Nelfia, A. Younsi, A. Aït-Mokhtar, Analysis of an accelerated carbonation test with severe preconditioning. Cem. Concr. Res. 57, 70–78 (2014)CrossRefGoogle Scholar
  32. 32.
    V. Wiktor, F. De Leo, C. Urzì, R. Guyonnet, P. Grosseau, E. Garcia-Diaz, Accelerated laboratory test to study fungal biodeterioration of cementitious matrix. Int. Biodeterior. Biodegradation 63(8), 1061–1065 (2009)CrossRefGoogle Scholar
  33. 33.
    T. Colinart, P. Glouannec, P. Chauvelon, Influence of the setting process and the formulation on the drying of hemp concrete. Constr. Build. Mater. 30, 372–380 (2012)CrossRefGoogle Scholar
  34. 34.
    B. Šavija, M. Luković, Carbonation of cement paste: understanding, challenges, and opportunities. Constr. Build. Mater. 117, 285–301 (2016)CrossRefGoogle Scholar
  35. 35.
    R.M.H. Lawrence, T.J. Mays, P. Walker, D. D’Ayala, Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim. Acta 444(2), 179–189 (2006)CrossRefGoogle Scholar
  36. 36.
    S. Xu, J. Wang, Y. Sun, Effect of water binder ratio on the early hydration of natural hydraulic lime. Mater. Struct. 48(10), 3431–3441 (2014)CrossRefGoogle Scholar
  37. 37.
    J.C. Maso, Interfacial transition zone in concrete. RILEM Report 11, London, 1996Google Scholar
  38. 38.
    K.O. Kjellsen, R.J. Detwiler, O.E. Gjørv, Pore structure of plain cement pastes hydrated at different temperatures. Cem. Concr. Res. 20(6), 927–933 (1990)CrossRefGoogle Scholar
  39. 39.
    J.-K. Kim, Y.-H. Moon, S.-H. Eo, Compressive strength development of concrete with different curing time and temperature. Cem. Concr. Res. 28(12), 1761–1773 (1998)CrossRefGoogle Scholar
  40. 40.
    P. Munoz, D. Pipet, in Bio-aggregate-Based Building Materials: Applications to Hemp Concretes, eds. S. Amziane, L. Arnaud. Plant-based Concretes in Structures: Structural Aspect-addition of a Wooden Support to Absorb the Strain (WILEY-ISTE., 2013)Google Scholar
  41. 41.
    L. Zingg, M. Briffaut, J. Baroth, Y. Malecot, Influence of cement matrix porosity on the triaxial behaviour of concrete. Cem. Concr. Res. 80, 52–59 (2016)CrossRefGoogle Scholar
  42. 42.
    A. Marri, The mechanical behaviour of cemented granular materials at high pressures, Ph.D. Thesis of University of Nottingham, UK, p. 279, 2010Google Scholar
  43. 43.
    F. Becquart, Caractérisation du comportement mécanique d’un mâchefer dans la perspective d’une méthodologie de dimensionnement adaptée aux structures de chaussées,” in XXIVe Rencontres Universitaires de Génie Civil, Nantes, France, 2006Google Scholar
  44. 44.
    Y. Maalej, L. Dormieux, J. Canou, J.C. Dupla, Strength of a granular medium reinforced by cement grouting. Comptes Rendus Mec. 335(2), 87–92 (2007)CrossRefGoogle Scholar
  45. 45.
    S. Horpibulsuk, Mechanism controlling undrained shear characteristics of induced cemented clays. Lowl. Technol. Int. 7(2), 9–18 (2005)Google Scholar
  46. 46.
    M. Aloufi, J.C. Santamarina, Low and high strain macrobehavior of grain masses—the effect of particle eccentricity. Food Proc Eng Inst ASAE 38, 877–887 (1995)Google Scholar
  47. 47.
    M. Stasiak, M. Molenda, M. Bańda, E. Gondek, Mechanical properties of sawdust and woodchips. Fuel 159, October 2016, 900–908 (2015)Google Scholar
  48. 48.
    M.R. Wu, D.L. Schott, G. Lodewijks, Physical properties of solid biomass. Biomass Bioenerg. 35(5), 2093–2105 (2011)CrossRefGoogle Scholar
  49. 49.
    C. Magniont, Contribution à la formulation et à la caractérisation d’un écomatériau de construction à base d’agroressources, Ph.D. Thesis, Toulouse III University—Paul Sabatier, France, p. 343, 2010Google Scholar
  50. 50.
    Z. Pehlivanli, I. Uzun, Z.P. Yücel, I. Demir, The effect of different fiber reinforcement on the thermal and mechanical properties of autoclaved aerated concrete. Constr. Build. Mater. 112, 325–330 (2016)CrossRefGoogle Scholar
  51. 51.
    Z. Pehlivanli, İ. Uzun, İ. Demir, Mechanical and microstructural features of autoclaved aerated concrete reinforced with autoclaved polypropylene, carbon, basalt and glass fiber. Constr. Build. Mater. 96, 428–433 (2015)CrossRefGoogle Scholar
  52. 52.
    M. Albayrak, A. Yörükoǧlu, S. Karahan, S. Atlihan, H. Yilmaz Aruntaş, I. Girgin, Influence of zeolite additive on properties of autoclaved aerated concrete. Build. Environ. 42(9), 3161–3165 (2007)Google Scholar
  53. 53.
    M. Jerman, M. Keppert, J. Výborný, R. Černý, Hygric, thermal and durability properties of autoclaved aerated concrete. Constr. Build. Mater. 41, 352–359 (2013)CrossRefGoogle Scholar
  54. 54.
    E.P. Aigbomian, M. Fan, Development of Wood-Crete building materials from sawdust and waste paper. Constr. Build. Mater. 40, 361–366 (2013)CrossRefGoogle Scholar
  55. 55.
    J. Wu, G. Bai, H. Zhao, X. Li, Mechanical and thermal tests of an innovative environment-friendly hollow block as self-insulation wall materials. Constr. Build. Mater. 93, 342–349 (2015)CrossRefGoogle Scholar
  56. 56.
    M. Sutcu, J.J. Del Coz Diaz, F.P. Alvarez Rabanal, O. Gencel, S. Akkurt, Thermal performance optimization of hollow clay bricks made up of paper waste, Energy Build. 75, 96–108 (2014)Google Scholar
  57. 57.
    K.S. Shibib, H.I. Qatta, M.S. Hamza, Enhancement in thermal and mechanical properties of bricks. Therm. Sci. 17(4), 1119–1123 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Morgan Chabannes
    • 1
    • 2
  • Eric Garcia-Diaz
    • 3
  • Laurent Clerc
    • 4
  • Jean-Charles Bénézet
    • 5
  • Frédéric Becquart
    • 6
    • 7
  1. 1.LGCgE-GCEIMT Lille DouaiDouai CedexFrance
  2. 2.Université de LilleLilleFrance
  3. 3.C2MAIMT Mines AlèsAlès CedexFrance
  4. 4.C2MAIMT Mines AlèsAlès CedexFrance
  5. 5.C2MAIMT Mines AlèsAlès CedexFrance
  6. 6.LGCgE-GCEIMT Lille DouaiDouai CedexFrance
  7. 7.Université de LilleLilleFrance

Personalised recommendations