Lime-Based Binders

  • Morgan Chabannes
  • Eric Garcia-Diaz
  • Laurent Clerc
  • Jean-Charles Bénézet
  • Frédéric Becquart
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Unlike Portland cement, the use of lime goes back much further in time. During the Greco-Roman period, walls were built of lime-based mortars blended with fine sand and pozzolanic additives (volcanic ash).

References

  1. 1.
    G. Martinet, P. Souchu, “La chaux - Définitions et histoire,” Techniques de l’Ingénieur (2009), pp. 11, C922Google Scholar
  2. 2.
    NF EN 459-1 Standard. Building Lime—Part 1, AFNOR (2015) Google Scholar
  3. 3.
    M. Fourmentin, P. Faure, S. Gauffinet, U. Peter, D. Lesueur, D. Daviller, G. Ovarlez, P. Coussot, Porous structure and mechanical strength of cement-lime pastes during setting. Cem. Concr. Res. 77, 1–8 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Pavia, R. Walker, P. Veale, A. Wood, Impact of the properties and reactivity of rice husk ash on lime mortar properties. J. Mater. Civ. Eng. 26, (2014)Google Scholar
  5. 5.
    A. Arizzi, G. Cultrone, M. Brummer, H. Viles, A chemical, morphological and mineralogical study on the interaction between hemp hurds and aerial and natural hydraulic lime particles: Implications for mortar manufacturing. Constr. Build. Mater. 75, 375–384 (2015)CrossRefGoogle Scholar
  6. 6.
    F.A. Cardoso, H.C. Fernandes, R.G. Pileggi, M.A. Cincotto, V.M. John, Carbide lime and industrial hydrated lime characterization. Powder Technol. 195(2), 143–149 (2009)CrossRefGoogle Scholar
  7. 7.
    CESA, St Astier Pure and NHLs. Available: http://www.stastier.co.uk/nhl/info/hydraul.htm
  8. 8.
    J. Grilo, P. Faria, R. Veiga, A. Santos Silva, V. Silva, A. Velosa, New natural hydraulic lime mortars—Physical and microstructural properties in different curing conditions. Constr. Build. Mater. 54, 378–384 (2014)CrossRefGoogle Scholar
  9. 9.
    P.F.G. Banfill, A.M. Forster, S. Mackenzie, M.P. Sanz, E.M. Szadurski, Natural hydraulic limes for masonry repair : Hydration and workability. 34th Cem. Concr. Sci. Conf. 224, (2014)Google Scholar
  10. 10.
    Ö. Cizer, K. Van Balen, J. Elsen, D. Van Gemert, Real-time investigation of reaction rate and mineral phase modifications of lime carbonation. Constr. Build. Mater. 35, 741–751 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Bernal, J. Provis, R. Mejia de Gutierrez, J. Van Deventer, Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: Effect of exposure conditions. Mater. Struct. 48, 653–669 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Fernández Bertos, S.J.R. Simons, C.D. Hills, P.J. Carey, A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 112(3), 193–205 (2004)CrossRefGoogle Scholar
  13. 13.
    C. Shi, F. He, Y. Wu, Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures. Constr. Build. Mater. 26(1), 257–267 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Morandeau, M. Thiéry, P. Dangla, Investigation of the carbonation mechanism of CH and C–S–H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 56, 153–170 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Amziane, L. Arnaud, Les bétons de granulats d’origine végétale (Lavoisier. France, Application au béton de chanvre, 2013)Google Scholar
  16. 16.
    A. Gmira, Étude structurale et thermodynamique d’hydrates modèle du ciment, Ph.D. Thesis, Orleans University, France, p. 215, 2004Google Scholar
  17. 17.
    S. Goñi, F. Puertas, M.S. Hernández, M. Palacios, A. Guerrero, J.S. Dolado, B. Zanga, F. Baroni, Quantitative study of hydration of C3S and C2S by thermal analysis. J. Therm. Anal. Calorim. 102(3), 965–973 (2010)CrossRefGoogle Scholar
  18. 18.
    W. Xu, Y.T. Lo, D. Ouyang, S.A. Memon, F. Xing, W. Wang, X. Yuan, Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste. Constr. Build. Mater. 89, 90–101 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Lanas, J.L.P. Bernal, M. Bello, J.I. Galindo, Mechanical properties of natural hydraulic lime-based mortars. Cem. Concr. Res. 34, 2191–2201 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Chabannes, E. Garcia-Diaz, L. Clerc, J.C. Bénézet, Effect of curing conditions and Ca(OH)2-treated aggregates on mechanical properties of rice husk and hemp concretes using a lime-based binder. Constr. Build. Mater. 102, 821–833 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Grilo, A. Santos Silva, P. Faria, A. Gameiro, R. Veiga, A. Velosa, Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Constr. Build. Mater. 51, 287–294 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Arizzi, G. Martinez-Huerga, E. Sebastián-Pardo, G. Cultrone, Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions. Mater. Construcción 65(318), e053 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Xu, J. Wang, Y. Sun, Effect of water binder ratio on the early hydration of natural hydraulic lime. Mater. Struct. 48(10), 3431–3441 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Famy, K.L. Scrivener, A. Atkinson, A.R. Brough, Effects of an early or a late heat treatment on the microstructure and composition of inner C–S–H products of Portland cement mortars. Cem. Concr. Res. 32(2), 269–278 (2002)CrossRefGoogle Scholar
  25. 25.
    A. Gajewicz, Characterisation of Cement Microstructure and Pore—Water Interaction by 1H Nuclear Magnetic Resonance Relaxometry (University of Surrey, UK, 2014), p. 162Google Scholar
  26. 26.
    J. Escalante-Garcia, J. Sharp, Variation in the composition of C–S–H gel in portland cement pastes cured at various temperatures. J. Am. Ceram. Soc. 82(11), 3237–3241 (1999)CrossRefGoogle Scholar
  27. 27.
    A.M. Forster, E.M. Szadurski, P.F.G. Banfill, Deterioration of natural hydraulic lime mortars, I: Effects of chemically accelerated leaching on physical and mechanical properties of uncarbonated materials. Constr. Build. Mater. 72, 199–207 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Ekström, Leaching of Concrete. Experiments and Modelling (Division of Building Materials, LTH, Lund University, 2001), p. 200Google Scholar
  29. 29.
    A. Cheng, S.-J. Chao, W.-T. Lin, Effects of leaching behavior of calcium ions on compression and durability of cement-based materials with mineral admixtures. Mater. (Basel) 6(5), 1851–1872 (2013)CrossRefGoogle Scholar
  30. 30.
    O. Cizer, Competition between carbonation and hydration on the hardening of calcium hydroxide and calcium silicate binders, Ph.D. Thesis, Catholic University of Leuven, Belgium, 2009Google Scholar
  31. 31.
    P. Turcry, L. Oksri-Nelfia, A. Younsi, A. Aït-Mokhtar, Analysis of an accelerated carbonation test with severe preconditioning. Cem. Concr. Res. 57, 70–78 (2014)CrossRefGoogle Scholar
  32. 32.
    R.M.H. Lawrence, A study of carbonation in non-hydraulic lime mortars, Ph.D. Thesis, University of Bath, UK, p. 316, 2006Google Scholar
  33. 33.
    R.M.H. Lawrence, T.J. Mays, P. Walker, D. D’Ayala, Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim. Acta 444(2), 179–189 (2006)CrossRefGoogle Scholar
  34. 34.
    R.M. Lawrence, T.J. Mays, S.P. Rigby, P. Walker, D. D’Ayala, Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cem. Concr. Res. 37(7), 1059–1069 (2007)CrossRefGoogle Scholar
  35. 35.
    G. Cultrone, E. Sebastián, M.O. Huertas, Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes. Cem. Concr. Res. 35(12), 2278–2289 (2005)CrossRefGoogle Scholar
  36. 36.
    J. Lanas, J.I. Alvarez, Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 33(11), 1867–1876 (2003)CrossRefGoogle Scholar
  37. 37.
    M. Arandigoyen, J.L.P. Bernal, M.A.B. López, J.I. Alvarez, Lime-pastes with different kneading water: Pore structure and capillary porosity. Appl. Surf. Sci. 252(5), 1449–1459 (2005)CrossRefGoogle Scholar
  38. 38.
    R. Cerny, Z. Pavlik, M. Pavlikova, Hygric and thermal properties of materials of historical masonry, in Proceedings on the 8th symposium on building physics in the Nordic Countries, Technical University of Denmark, 2008, pp. 903–910Google Scholar
  39. 39.
    E. Vejmelková, M. Keppert, P. Rovnaníková, Z. Keršner, R. Černý, Application of burnt clay shale as pozzolan addition to lime mortar. Cem. Concr. Compos. 34(4), 486–492 (2012)CrossRefGoogle Scholar
  40. 40.
    B. Silva, A.P. Ferreira Pinto, A. Gomes, Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 72, 208–218 (2014)Google Scholar
  41. 41.
    M.R. Veiga, F. Carvalho, Some performances characteristics of lime mortars for use on rendering and repointing of ancient buildings, in 5th International Masonry Conference, London, 1998, pp. 107–111Google Scholar
  42. 42.
    E. Vejmelková, R. Pernicová, R. Sovják, R. Černý, Properties of innovative renders on a lime basis for the renovation of historical buildings, in Structural studies, repairs and maintenance of heritage architecture XI, 2009, pp. 221–229Google Scholar
  43. 43.
    E. Vejmelková, M. Keppert, Z. Keršner, P. Rovnaníková, R. Černý, Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime-metakaolin plasters for renovation of historical buildings. Constr. Build. Mater. 31, 22–28 (2012)CrossRefGoogle Scholar
  44. 44.
    A. Velosa, F. Rocha, R. Veiga, Influence of chemical and mineralogical composition of metakaolin on mortar characteristics. Acta Geodyn. e Geomater. 6(1), 121–126 (2009)Google Scholar
  45. 45.
    M. Stefanidou, Study of the microstructure and the mechanical properties of traditional repair mortars, Ph.D. Thesis, Department of Civil Engineering, University of Thessaloniki, Greece, 2000Google Scholar
  46. 46.
    A. Arizzi, G. Cultrone, Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: A mineralogical, textural and physical-mechanical study. Constr. Build. Mater. 31, 135–143 (2012)CrossRefGoogle Scholar
  47. 47.
    T.-T. Nguyen, V. Picandet, S. Amziane, C. Baley, Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete. Eur. J. Environ. Civ. Eng. 13(9), 1039–1050 (2009)CrossRefGoogle Scholar
  48. 48.
    T.M. Dinh, Contribution au développement du béton de chanvre préfabriqué utilisant un liant pouzzolanique innovant, Ph.D. Thesis, Toulouse 3 University (Paul Sabatier), France, p. 211, 2014Google Scholar
  49. 49.
    P. Tronet, T. Lecompte, V. Picandet, C. Baley, Study of lime hemp composite precasting by compaction of fresh mix—An instrumented die to measure friction and stress state. Powder Technol. 258, 285–296 (2014)CrossRefGoogle Scholar
  50. 50.
    P. Tronet, T. Lecompte, V. Picandet, C. Baylet, Study of lime and hemp concrete (lhc)—Mix design, casting process and mechanical behaviors. Cem. Concr. Compos. 67, 60–72 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Siddiqui, Effect of Temperature and Curing on the Early Hydration of Cementitious Materials (Bangladesh University of Engineering and Technology, 2010). p. 169Google Scholar
  52. 52.
    A. Kouakou, C. Legrand, E. Wirquin, Mesure de l’énergie d’activation apparente des ciments dans les mortiers à l’aide du calorimètre semi-adiabatique de Langavant. Mater. Struct. 29, 444–447 (1996)CrossRefGoogle Scholar
  53. 53.
    K.O. Kjellsen, R.J. Detwiler, O.E. Gjørv, Pore structure of plain cement pastes hydrated at different temperatures. Cem. Concr. Res. 20(6), 927–933 (1990)CrossRefGoogle Scholar
  54. 54.
    J.-K. Kim, Y.-H. Moon, S.-H. Eo, Compressive strength development of concrete with different curing time and temperature. Cem. Concr. Res. 28(12), 1761–1773 (1998)CrossRefGoogle Scholar
  55. 55.
    T. Boubekeur, K. Ezziane, E.-H. Kadri, Estimation of mortars compressive strength at different curing temperature by the maturity method. Constr. Build. Mater. 71, 299–307 (2014)CrossRefGoogle Scholar
  56. 56.
    E. Gallucci, X.Y. Zhang, K. Scrivener, Influence de la température sur le développement microstructural des bétons, Septième édition des journées scientifiques du regroupement francophone pour la recherche et la formation sur le béton (RF) 2 B (France, Toulouse, 2006), p. 10Google Scholar
  57. 57.
    C. Shi, R.L. Day, Acceleration of strength gain of lime-pozzolan cements by thermal activation. Cem. Concr. Res. 23, 824–832 (1993)CrossRefGoogle Scholar
  58. 58.
    F. Medici, L. Piga, G. Rinaldi, Behaviour of polyaminophenolic additives in the granulation of lime and fly-ash. Waste Manag. 20(7), 491–498 (2000)CrossRefGoogle Scholar
  59. 59.
    F. Medici, G. Rinaldi, Poly-Amino-Phenolic additives accelerating the carbonation of hydrated lime in mortar. Environ. Eng. Sci. 19(4), 271–276 (2002)CrossRefGoogle Scholar
  60. 60.
    L. Arnaud, E. Gourlay, Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 28(1), 50–56 (2012)CrossRefGoogle Scholar
  61. 61.
    P. De Bruijn, Hemp Concrete: Mechanical Properties Using Both Shives and Fibers (Faculty of Landscape planning. Swedish University of Agricultural Sciences, Lund, 2008)Google Scholar
  62. 62.
    V. Nozahic, S. Amziane, G. Torrent, K. Saïdi, H. De Baynast, Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cem. Concr. Compos. 34(2), 231–241 (2012)CrossRefGoogle Scholar
  63. 63.
    J. Chamoin, Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation, Ph.D. Thesis, Rennes 1 University, INSA Rennes, France, p. 198, 2013Google Scholar
  64. 64.
    Y. Sébaïbi, R.M. Dheilly, B. Beaudoin, M. Quéneudec, The effect of various slaked limes on the microstructure of a lime-cement-sand mortar. Cem. Concr. Res. 36(5), 971–978 (2006)CrossRefGoogle Scholar
  65. 65.
    M. Chabannes, E. Garcia-Diaz, L. Clerc, J.-C. Bénézet, Studying the hardening and mechanical performances of rice husk and hemp-based building materials cured under natural and accelerated carbonation. Constr. Build. Mater. 94, 105–115 (2015)CrossRefGoogle Scholar
  66. 66.
    A. Bras, F.M.A. Henriques, Natural hydraulic lime based grouts—The selection of grout injection parameters for masonry consolidation. Constr. Build. Mater. 26(1), 135–144 (2012)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Morgan Chabannes
    • 1
    • 2
  • Eric Garcia-Diaz
    • 3
  • Laurent Clerc
    • 4
  • Jean-Charles Bénézet
    • 5
  • Frédéric Becquart
    • 6
    • 7
  1. 1.LGCgE-GCEIMT Lille DouaiDouai CedexFrance
  2. 2.Université de LilleLilleFrance
  3. 3.C2MAIMT Mines AlèsAlès CedexFrance
  4. 4.C2MAIMT Mines AlèsAlès CedexFrance
  5. 5.C2MAIMT Mines AlèsAlès CedexFrance
  6. 6.LGCgE-GCEIMT Lille DouaiDouai CedexFrance
  7. 7.Université de LilleLilleFrance

Personalised recommendations