Advertisement

Two Typical Plant Aggregates for Bio-Based Concretes

  • Morgan Chabannes
  • Eric Garcia-Diaz
  • Laurent Clerc
  • Jean-Charles Bénézet
  • Frédéric Becquart
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Many by-products of plant origin have been incorporated in mineral binders. However, it is important to distinguish plant fibers used as reinforcement in cement composite materials from plant-derived aggregates used for the manufacturing of lightweight insulating concretes (bio-based concretes).

References

  1. 1.
    V. Nozahic, Vers une nouvelle démarche de conception des bétons végétaux lignocellulosiques basée sur la compréhension et l’amélioration de l’interface Liant/Végétal. Application à des granulats de chènevotte et de tige de tournesol associés à un liant ponce/chaux, Ph.D. Thesis (Clermont University, France, 2012), p. 311Google Scholar
  2. 2.
    T.T. Nguyen, Contribution à l’étude de la formulation et du procédé de fabrication d’éléments de construction en béton de chanvre, Ph.D. thesis (Bretagne-Sud University, France, 2010) p. 167Google Scholar
  3. 3.
    D. Sedan, Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment. Influence sur les propriétés mécaniques du composite, Groupe d’étude des Matériaux Hétérogènes, Ph.D. Thesis, (Limoges University, France, 2007) p. 129Google Scholar
  4. 4.
    CETIOM, Enquête culturale, Chanvre 2013. Available: http://www.cetiom.fr
  5. 5.
    M. Chabannes, Formulation et étude des propriétés mécaniques d’agrobétons légers isolants à base de balles de riz et de chènevotte pour l’éco-construction (Université de Montpellier, 2015), p. 215Google Scholar
  6. 6.
    Constuire en Chanvre, Règles professionnelles d’éxécution (SEBTP. Société d’Édition du Bâtiment et des Travaux Publics, 2012)Google Scholar
  7. 7.
    E. Biénabe, A. Rival, D. Loeillet, Développement durable et filières tropicales (QUAE, 2016), p. 336Google Scholar
  8. 8.
    FAO, Classement mondial 2013 des pays producteurs de riz paddy, (2014) Available: http://www.lasyntheseonline.fr
  9. 9.
    W.P. Armstrong, Fruit Terminology—Part 2, (2001). Available: http://waynesword.palomar.edu/termfr2.htm
  10. 10.
    K. Ganesan, K. Rajagopal, K. Thangavel, Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr. Build. Mater. 22(8), 1675–1683 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Serrano, M. Victoria Borrachero, J. Monzó, J. Payà, Morteros aligerados con cascarilla de arroz: diseño de mezsclas evaluación de propriedades. Dyna 175, 128–136 (2012)Google Scholar
  12. 12.
    R. Jauberthie, F. Rendell, S. Tamba, I. Cisse, Origin of the pozzolanic effect of rice husks. Constr. Build. Mater. 14(8), 419–423 (2000)CrossRefGoogle Scholar
  13. 13.
    V. Van, C. Rößler, D. Bui, H. Ludwig, Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete. Cem. Concr. Compos. 53, 270–278 (2014)CrossRefGoogle Scholar
  14. 14.
    P. Chindaprasirt, S. Homwuttiwong, C. Jaturapitakkul, Strength and water permeability of concrete containing palm oil fuel ash and rice husk-bark ash. Constr. Build. Mater. 21(7), 1492–1499 (2007)CrossRefGoogle Scholar
  15. 15.
    G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, E.D.M.R. Fairbairn, S. Hempel, Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash. Cem. Concr. Compos. 33(5), 529–534 (2011)CrossRefGoogle Scholar
  16. 16.
    W. Xu, Y.T. Lo, D. Ouyang, S.A. Memon, F. Xing, W. Wang, X. Yuan, Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste. Constr. Build. Mater. 89, 90–101 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Johar, I. Ahmad, A. Dufresne, Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 37(1), 93–99 (2012)CrossRefGoogle Scholar
  18. 18.
    M. González De la Cotera, Morteros Ligeros de Cáscara de Arroz, in IV Congreso Nacional de Ingeniería Civil, 1982Google Scholar
  19. 19.
    M. Ibrahim Nasr Morsi, Properties of rice straw cementitious composite, PhD Thesis (Darmstadt University, Germany, 2011) p. 147Google Scholar
  20. 20.
    D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 41(24), 8075–8098 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Diquélou, E. Gourlay, L. Arnaud, B. Kurek, Impact of hemp shiv on cement setting and hardening: influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix. Cem. Concr. Compos. 55, 112–121 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Garcia-Jaldon, D. Dupeyre, M.R. Vignon, Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenerg. 14(3), 251–260 (1998)CrossRefGoogle Scholar
  23. 23.
    K.G. Mansaray, A.E. Ghaly, Thermal degradation of rice husks in an oxygen atmosphere. Energy Sources 21(5), 453–466 (1999)CrossRefGoogle Scholar
  24. 24.
    T.P.T. Tran, J.-C. Bénézet, A. Bergeret, Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind. Crops Prod. 58, 111–124 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Chabannes, E. Garcia-Diaz, L. Clerc, J.C. Bénézet, Effect of curing conditions and Ca(OH)2-treated aggregates on mechanical properties of rice husk and hemp concretes using a lime-based binder. Constr. Build. Mater. 102, 821–833 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Glé, Acoustique des Matériaux du Bâtiment à base de Fibres et Particules Végétales. Outils de Caractérisation, Modélisation et Optimisation, PhD Thesis (École Nationale des Travaux Publics de l’État, France, 2013) p. 127Google Scholar
  27. 27.
    B.-D. Park, S.G. Wi, K.H. Lee, A.P. Singh, T.-H. Yoon, Y.S. Kim, Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass Bioenerg. 25(3), 319–327 (2003)CrossRefGoogle Scholar
  28. 28.
    A. Kaupp, Gasification of rice hulls: theory and Praxis (Vieweg + Teubner Verlag, Wiesbaden, 1984)CrossRefGoogle Scholar
  29. 29.
    M. Chabannes, J.-C. Bénézet, L. Clerc, E. Garcia-Diaz, Use of raw rice husk as natural aggregate in a lightweight insulating concrete: an innovative application. Constr. Build. Mater. 70, 428–438 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Salas and J. Veras Castro, Materiales de construcción con propiedades aislantes a base de cascara de arroz. Inf. la Constr. 37(372), 53–64 (2012)Google Scholar
  31. 31.
    R. Rowell, Moisture properties, in Handbook of wood chemistry and wood composites (CRC Press, Boca Raton, 2005), p. 21Google Scholar
  32. 32.
    F. Collet, M. Bart, L. Serres, J. Miriel, Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater. 22(6), 1271–1280 (2008)CrossRefGoogle Scholar
  33. 33.
    A. Prada, C.E. Cortés, La descomposición térmica de la cascarilla de arroz: una alternativa de aprovechamiento integral. Rev. ORINOQUIA 14(1), 155–170 (2010)Google Scholar
  34. 34.
    A. Kaupp, J. Goss, Technical and economical problems in the gasification of rice hulls. Physical and chemical properties. Energy Agric. 1, 201–234 (1983)CrossRefGoogle Scholar
  35. 35.
    V. Nozahic, S. Amziane, G. Torrent, K. Saïdi, H. De Baynast, Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cem. Concr. Compos. 34(2), 231–241 (2012)CrossRefGoogle Scholar
  36. 36.
    V. Picandet, P. Tronet, C. Baley, Caractérisation granulométrique des chènevottes, in 30e Rencontres AUGC-IBPSA (Chambéry, France, 2012)Google Scholar
  37. 37.
    C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor, S. Sokhansanj, Sieveless particle size distribution analysis of particulate materials through computer vision. Comput. Electron. Agric. 66(2), 147–158 (2009)CrossRefGoogle Scholar
  38. 38.
    L. Arnaud, E. Gourlay, Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 28(1), 50–56 (2012)CrossRefGoogle Scholar
  39. 39.
    V. Cerezo, Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales : approche expérimentale et modélisation théorique, PhD Thesis (École Nationale des Travaux Publics de l’État, Lyon, France 2005), p. 243Google Scholar
  40. 40.
    S. Tamba, I. Cisse, F. Rendell, R. Jauberthie, Rice husk in lightweight mortars, in Second international symposium on structural lightweight aggregate concrete (Kristiansand, Norway, 2000), pp. 117–124Google Scholar
  41. 41.
    R.D. Andrade, R. Lemus, C. Pérez, Models of sorption isotherms for food. Vitae 18, 325–334 (2011)Google Scholar
  42. 42.
    M.V. Bastias, A. Cloutier, Evaluation of wood sorption models for high temperatures. Maderas Ciencias y Tecnol. 7(3), 145–158 (2005)Google Scholar
  43. 43.
    A. Bazargan, T. Gebreegziabher, C.-W. Hui, G. McKay, The effect of alkali treatment on rice husk moisture content and drying kinetics. Biomass Bioenerg. 70, 468–475 (2014)CrossRefGoogle Scholar
  44. 44.
    G. Bingol, B. Prakash, Z. Pan, Dynamic vapor sorption isotherms of medium grain rice varieties. LWT—Food Sci. Technol. 48(2), 156–163 (2012)Google Scholar
  45. 45.
    P. Lura, M. Wyrzykowski, C. Tang, E. Lehmann, Internal curing with lightweight aggregate produced from biomass-derived waste. Cem. Concr. Res. 59, 24–33 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Morgan Chabannes
    • 1
    • 2
  • Eric Garcia-Diaz
    • 3
  • Laurent Clerc
    • 4
  • Jean-Charles Bénézet
    • 5
  • Frédéric Becquart
    • 6
    • 7
  1. 1.LGCgE-GCEIMT Lille DouaiDouai CedexFrance
  2. 2.Université de LilleLilleFrance
  3. 3.C2MAIMT Mines AlèsAlès CedexFrance
  4. 4.C2MAIMT Mines AlèsAlès CedexFrance
  5. 5.C2MAIMT Mines AlèsAlès CedexFrance
  6. 6.LGCgE-GCEIMT Lille DouaiDouai CedexFrance
  7. 7.Université de LilleLilleFrance

Personalised recommendations