Staphylococcus spp.

  • Douglas I. Johnson


  • Genomics: multiple S. aureus strains have been sequenced, including methicillin-resistant and methicillin-sensitive clinical isolates and community isolates (Holden et al. 2004):
    • Staphylococcus aureus strain MRSA252 (methicillin-resistant) chromosome: 2,902,619 bp; 2671 predicted ORFs

    • Staphylococcus aureus strain MSSA476 (methicillin-sensitive) chromosome: 2,799,802 bp; 2565 predicted ORFs

    • Staphylococcus epidermidis strain ATCC 12228 chromosome: 2,499,279 bp; 2419 predicted ORFs (Zhang et al. 2003)

    • Staphylococcus saprophyticus strain ATCC 15305 chromosome: 2,516,575 bp; 2446 predicted ORFs (Kuroda et al. 2005)

  • Cell morphology:
    • Cocci: irregular “grape-like” clusters (Fig. 9.1)

  • Gram stain:
    • Gram positive

  • Growth (Ramsey et al. 2014):
    • Facultative anaerobes; catalase positive.

    • Coagulase positive (S. aureus); most other Staphylococcus spp. are coagulase negative.

    • Salt and desiccation tolerant; associated with colonization of the skin.

    • Reservoirs: ~one-third of population are carriers; predominantly found on the skin, mucous membranes in the anterior nares (nose) and the respiratory tract, the gastrointestinal tract, and on vaginal mucous membranes; occasionally found in contaminated soil and contaminated food products; antibiotic-resistant strains are often found in hospital environments.

    • Expert biofilm formers (see below).

    • At least 40 species fall into 11 taxonomic groups, many of which are associated with specific mammalian species.


  1. Barbu EM, Ganesh VK, Gurusiddappa S, Mackenzie RC, Foster TJ, Sudhof TC, Höök M (2010) Beta-Neurexin is a ligand for the Staphylococcus aureus MSCRAMM SdrC. PLoS Pathog 6:e1000726CrossRefPubMedPubMedCentralGoogle Scholar
  2. Becker K, Heilmann C, Peters G (2014) Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Kockritz-Blickwede M (2010) Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Inn Immun 2:576–586CrossRefGoogle Scholar
  4. Bestebroer J, Poppelier MJJG, Ulfman LH, Lenting PJ, Denis CV, Kessel KPMV, Strijp JAGV, Haas CJCD (2007) Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin–mediated neutrophil rolling. Blood 109:2936–2943PubMedGoogle Scholar
  5. Bowden MG, Visai L, Longshaw CM, Holland KT, Speziale P, Hook M (2002) Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 277:43017–43023CrossRefPubMedGoogle Scholar
  6. Bradshaw WJ, Davies AH, Chambers CJ, Roberts AK, Shone CC, Acharya KR (2015) Molecular features of the sortase enzyme family. FEBS J 282:2097–2114CrossRefPubMedGoogle Scholar
  7. Bronesky D, Wu Z, Marzi S, Walter P, Geissmann T, Moreau K, Vandenesch F, Caldelari I, Romby P (2016) Staphylococcus aureus RNAIII and its regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression. Annu Rev Microbiol 70:299–316CrossRefPubMedGoogle Scholar
  8. Bukowski M, Wladyka B, Dubin G (2010) Exfoliative toxins of Staphylococcus aureus. Toxins 2:1148–1165CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burts ML, Williams WA, DeBord K, Missiakas DM (2005) EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc NatI Acad Sci USA 102:1169–1174CrossRefGoogle Scholar
  10. Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock JI, Herrmann M, Preissner KT (2002) Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 8:687–693CrossRefPubMedGoogle Scholar
  11. Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M, Rohde H (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207CrossRefPubMedGoogle Scholar
  12. Clarke SR, Wiltshire MD, Foster SJ (2004) IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51:1509–1519CrossRefPubMedGoogle Scholar
  13. Collen D (1998) Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat Med 4:279–284CrossRefPubMedGoogle Scholar
  14. Corrigan RM, Miajlovic H, Foster TJ (2009) Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ (2007) Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 189:1025–1035CrossRefPubMedGoogle Scholar
  16. Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1996) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433Google Scholar
  17. Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34CrossRefPubMedPubMedCentralGoogle Scholar
  18. Doery HM, Magnuson BJ, Cheyne IM, Galasekharam J (1963) A phospholipase in staphylococcal toxin which hydrolizes sphingomyelin. Nature 198:1091–1093CrossRefPubMedGoogle Scholar
  19. Downer R, Roche F, Park PW, Mecham RP, Foster TJ (2002) The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem 277:243–250CrossRefPubMedGoogle Scholar
  20. Falugi F, Kim HK, Missiakas DM, Schneewind O (2013) Role of protein a in the evasion of host adaptive immune responses by Staphylococcus aureus. mBio 4:e00575-00513Google Scholar
  21. Foster TJ, Höök M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488CrossRefPubMedGoogle Scholar
  22. Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62CrossRefPubMedGoogle Scholar
  23. Gatermann S, John J, Marre R (1989) Staphylococcus saprophyticus urease: characterization and contribution to uropathogenicity in unobstructed urinary tract infection of rats. Infect Immun 57:110–116PubMedPubMedCentralGoogle Scholar
  24. Gatermann S, Kreft B, Marre R, Wanner G (1992) Identification and characterization of a surface-associated protein (Ssp) of Staphylococcus saprophyticus. Infect Immun 60:1055–1060PubMedPubMedCentralGoogle Scholar
  25. Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378CrossRefPubMedGoogle Scholar
  26. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695CrossRefPubMedPubMedCentralGoogle Scholar
  27. Haley KP, Skaar EP (2012) A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microbes Infect 14:217–227CrossRefPubMedGoogle Scholar
  28. Harraghy N, Hussain M, Haggar A, Chavakis T, Sinha B, Herrmann M, Flock JI (2003) The adhesive and immunomodulating properties of the multifunctional Staphylococcus aureus protein Eap. Microbiology 149:2701–2707CrossRefPubMedGoogle Scholar
  29. Hartford O, O’Brien L, Schofield K, Wells J, Foster TJ (2001) The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147:2545–2552CrossRefPubMedGoogle Scholar
  30. Hedman P, Ringertz O, Eriksson B, Kvarnfors P, Andersson M, Bengtsson L, Olsson K (1990) Staphylococcus saprophyticus found to be a common contaminant of food. J Infect 21:11–19CrossRefPubMedGoogle Scholar
  31. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091CrossRefPubMedGoogle Scholar
  32. Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024CrossRefPubMedGoogle Scholar
  33. Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Uekotter A, Peters G (2003) Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 149:2769–2778CrossRefPubMedGoogle Scholar
  34. Hell W, Meyer HG, Gatermann SG (1998) Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 29:871–881CrossRefPubMedGoogle Scholar
  35. Holden MTG, Feil EJ, Lindsay JA, Peacock SJ, Day NPJ, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc NatI Acad Sci USA 101:9786–9791CrossRefGoogle Scholar
  36. Holland LM, Conlon B, O'Gara JP (2011) Mutation of tagO reveals an essential role for wall teichoic acids in Staphylococcus epidermidis biofilm development. Microbiology 157:408–418CrossRefPubMedGoogle Scholar
  37. Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters G (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524PubMedPubMedCentralGoogle Scholar
  38. Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, Bubeck Wardenburg J (2011) A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kang M, Ko YP, Liang X, Ross CL, Liu Q, Murray BE, Höök M (2013) Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem 288:20520–20531CrossRefPubMedPubMedCentralGoogle Scholar
  40. Karavolos MH, Horsburgh MJ, Ingham E, Foster SJ (2003) Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149:2749–2758CrossRefPubMedGoogle Scholar
  41. King NP, Beatson SA, Totsika M, Ulett GC, Alm RA, Manning PA, Schembri MA (2011) UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology 157:1161–1175CrossRefPubMedGoogle Scholar
  42. Kline KA, Lewis AL (2016) Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr 4(2):1–31Google Scholar
  43. Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR, Otto M (2005) Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Investig 115:688–694CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kuroda M, Yamashita A, Hirakawa H, Kumano M, Morikawa K, Higashide M, Maruyama A, Inose Y, Matoba K, Toh H, Kuhara S, Hattori M, Ohta T (2005) Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc NatI Acad Sci USA 102:13272–13277CrossRefGoogle Scholar
  45. Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011) Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186:6445–6453CrossRefPubMedGoogle Scholar
  46. Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJ, Ruyken M, Malone CL, Heezius EC, Ward R, Milligan G, van Strijp JA, de Haas CJ, Horswill AR, van Kessel KP, Rooijakkers SH (2012) Staphylococcus aureus Staphopain a inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 31:3607–3619CrossRefPubMedPubMedCentralGoogle Scholar
  47. Le KY, Otto M (2015) Quorum-sensing regulation in staphylococci-an overview. Front Microbiol 6:1174CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215CrossRefPubMedPubMedCentralGoogle Scholar
  49. Makris G, Wright JD, Ingham E, Holland KT (2004) The hyaluronate lyase of Staphylococcus aureus – a virulence factor? Microbiology 150:2005–2013CrossRefPubMedGoogle Scholar
  50. McAdow M, DeDent AC, Emolo C, Cheng AG, Kreiswirth BN, Missiakas DM, Schneewind O (2012) Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun 80:3389–3398CrossRefPubMedPubMedCentralGoogle Scholar
  51. McCrea KW, Hartford O, Davis S, Eidhin DN, Lina G, Speziale P, Foster TJ, Höök M (2000) The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 146:1535–1546CrossRefPubMedGoogle Scholar
  52. McDevitt D, Francois P, Vaudaux P, Foster TJ (1994) Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11:237–248CrossRefPubMedGoogle Scholar
  53. McGavin MJ, Zahradka C, Rice K, Scott JE (1997) Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun 65:2621–2628PubMedPubMedCentralGoogle Scholar
  54. Mehlin C, Headley CM, Klebanoff SJ (1999) An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J Exp Med 189:907–918CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mellor IR, Thomas DH, Sansom MSP (1988) Properties of ion channels formed by Staphylococcus aureus delta-toxin. BBA 942:280–294CrossRefPubMedGoogle Scholar
  56. Menzies BE (2003) The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr Opin Infect Dis 16:225–229CrossRefPubMedGoogle Scholar
  57. Ní Eidhin D, Perkins S, Francois P, Vaudaux P, Höök M, Foster TJ (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30:245–257CrossRefPubMedGoogle Scholar
  58. O’Riordan K, Lee JC (2004) Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17:218–234CrossRefPubMedPubMedCentralGoogle Scholar
  59. Otto M (2009) Staphylococcus epidermidis-the ‘accidental’ pathogen. Nat Rev Microbiol 7:555–567CrossRefPubMedPubMedCentralGoogle Scholar
  60. Otto M (2014) Staphylococcus aureus toxins. Curr Opin Microbiol 17:32–37CrossRefPubMedGoogle Scholar
  61. Paharik AE, Horswill AR (2016) The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr 4(2):1–27Google Scholar
  62. Park S, Kelley KA, Vinogradov E, Solinga R, Weidenmaier C, Misawa Y, Lee JC (2010) Characterization of the structure and biological functions of a capsular polysaccharide produced by Staphylococcus saprophyticus. J Bacteriol 192:4618–4626CrossRefPubMedPubMedCentralGoogle Scholar
  63. Patti JM, Jonsson H, Guss B, Switalski LM, Wiberg K, Lindberg M, Höök M (1992) Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J Biol Chem 267:4766–4772PubMedGoogle Scholar
  64. Peetermans M, Verhamme P, Vanassche T (2015) Coagulase activity by Staphylococcus aureus: a potential target for therapy? Semin Thromb Hemost 41:433–444CrossRefPubMedGoogle Scholar
  65. Peschel A, Otto M (2013) Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol 11:667–673CrossRefPubMedPubMedCentralGoogle Scholar
  66. Prat C, Haas PJ, Bestebroer J, de Haas CJ, van Strijp JA, van Kessel KP (2009) A homolog of formyl peptide receptor-like 1 (FPRL1) inhibitor from Staphylococcus aureus (FPRL1 inhibitory protein) that inhibits FPRL1 and FPR. J Immunol 183:6569–6578CrossRefPubMedGoogle Scholar
  67. Prevost G, Cribier B, Couppie P, Petiau P, Supersac G, Finck-Barbancon V, Monteil H, Piemont Y (1995) Panton-valentine leukocidin and gamma hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect Immun 63:4121–4129PubMedPubMedCentralGoogle Scholar
  68. Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Loffler B, Peters G (2014) Staphylococcus aureus small Colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 4:99CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ramsey M, Hartke A, Huycke M (2014) The physiology and metabolism of enterococci. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  70. Richardson AR, Libby SJ, Fang FC (2008) A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319:1672–1676CrossRefPubMedGoogle Scholar
  71. Roche FM, Meehan M, Foster TJ (2003) The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149:2759–2767CrossRefPubMedGoogle Scholar
  72. Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJ, van Kessel KP, van Strijp JA (2005) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927CrossRefPubMedGoogle Scholar
  73. Rosenstein R, Götz F (2000) Staphylococcal lipases: biochemical and molecular characterization. Biochimie 82:1005–1014CrossRefPubMedGoogle Scholar
  74. Sakinc T, Kleine B, Gatermann SG (2006) SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein. Infect Immun 74:4615–4623CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schlievert PM, Shands KN, Dan BB, Schmid GP, Nishimura RD (1981) Identification and characterization of an exotoxin from Staphylococcus aureus associated with toxic-shock syndrome. J Infect Dis 143:509–516CrossRefPubMedGoogle Scholar
  76. Shahrooei M, Hira V, Stijlemans B, Merckx R, Hermans PW, Van Eldere J (2009) Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein. Infect Immun 77:3670–3678CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, Foster TJ, Cunnion KM (2012) Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PLoS One 7:e38407CrossRefPubMedPubMedCentralGoogle Scholar
  78. Smagur J, Guzik K, Magiera L, Bzowska M, Gruca M, Thøgersen IB, Enghild JJ, Potempa J (2009.;1) A new pathway of staphylococcal pathogenesis: apoptosis-like death induced by staphopain B in human neutrophils and monocytes. J Inn Immun 1:98–108CrossRefGoogle Scholar
  79. Smith EJ, Visai L, Kerrigan SW, Speziale P, Foster TJ (2011) The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus. Infect Immun 79:3801–3809CrossRefPubMedPubMedCentralGoogle Scholar
  80. Spaan AN, Surewaard BG, Nijland R, van Strijp JA (2013) Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 67:629–650CrossRefPubMedGoogle Scholar
  81. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26:422–447CrossRefPubMedPubMedCentralGoogle Scholar
  82. Thammavongsa V, Schneewind O, Missiakas DM (2011) Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochem 12:56CrossRefPubMedPubMedCentralGoogle Scholar
  83. Thammavongsa V, Missiakas DM, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342:863–866CrossRefPubMedPubMedCentralGoogle Scholar
  84. Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13:529–543CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tomita T, Kamio Y (1997) Molecular biology of the pore-forming cytolysins from Staphylococcus aureus, α- and γ-hemolysins and leukocidin. Biosci Biotech Biochem 61:565–572CrossRefGoogle Scholar
  86. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tormo MA, Knecht E, Gotz F, Lasa I, Penades JR (2005) Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151:2465–2475CrossRefPubMedGoogle Scholar
  88. Vazquez V, Liang X, Horndahl JK, Ganesh VK, Smeds E, Foster TJ, Höök M (2011) Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). J Biol Chem 286:29797–29805CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wang B, Muir TW (2016) Regulation of virulence in Staphylococcus aureus: molecular mechanisms and remaining puzzles. Cell Chem Biol 23:214–224CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang C, Li M, Dong D, Wang J, Ren J, Otto M, Gao Q (2007a) Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect 9:1376–1383CrossRefPubMedGoogle Scholar
  91. Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M (2007b) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514CrossRefPubMedGoogle Scholar
  92. Zhang Y-Q, Ren S-X, Li H-L, Wang Y-X, Fu G, Yang J, Qin Z-Q, Miao Y-G, Wang W-Y, Chen R-S, Shen Y, Chen Z, Yuan Z-H, Zhao G-P, Qu D, Danchin A, Wen Y-M (2003) Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49:1577–1593CrossRefPubMedGoogle Scholar
  93. Zong Y, Xu Y, Liang X, Keene DR, Höök A, Gurusiddappa S, Höök M, Narayana SVL (2005) A ‘collagen hug’ model for Staphylococcus aureus CNA binding to collagen. EMBO J 24:4224–4236CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations