Listeria spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Listeria monocytogenes chromosome (serovar 1/2a): 2,944,528 bp; 2853 predicted ORFs (Glaser et al. 2001)

  • Cell morphology:
    • Rod-shaped cells; sometimes in short chains (Fig. 6.1)

    • Non-endospore former

    • Peritrichous flagella at 23 °C (outside host) but not at 37 °C (inside host)

  • Gram stain:
    • Gram positive

  • Growth:
    • Facultative anaerobes; catalase positive

    • Ubiquitous in nature: soil, vegetation, and animal feces

    • Cold enrichment: ability to grow at 4 °C
      • Major problem in food safety with contaminated food products (Donnelly 2001)

    • At least 17 species: Listeria monocytogenes is primary human pathogen:
      • Serotypes 1/2a, 1/2b, and 4b – ~90% of human isolates

References

  1. de las Heras A, Cain RJ, Bielecka MK, Vázquez-Boland JA (2011) Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 14:118–127CrossRefPubMedGoogle Scholar
  2. Asanoa K, Kakizakib I, Nakane A (2012) Interaction of Listeria monocytogenes autolysin amidase with glycosaminoglycans promotes listerial adhesion to mouse hepatocytes. Biochimie 94:1291–1299CrossRefGoogle Scholar
  3. Aubry C, Goulard C, Nahori MA, Cayet N, Decalf J, Sachse M, Boneca IG, Cossart P, Dussurget O (2011) OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. J Infect Dis 204:731–740CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boreze E, Pellegrini E, Beretti J-L, Berche P (2001) SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes. Microbiology 147:2913–2923CrossRefGoogle Scholar
  5. Burkholder KM, Bhunia AK (2010) Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation and induces expression of LAP receptor Hsp60. Infect Immun 78:5062–5073CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cabanes D, Dussurget O, Dehoux P, Cossart P (2004) Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol 51:1601–1614CrossRefPubMedGoogle Scholar
  7. Cabanes D, Sousa S, Cebria A, Lecuit M, FG-d P, Cossart P (2005) Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J 24:2827–2838CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chico-Calero I, Suarez M, Gonzalez-Zorn B, Scortti M, Slaghuis J, Goebel W, Consortium TELG, Vazquez-Boland JA (2002) Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc NatI Acad Sci USA 99:431–436CrossRefGoogle Scholar
  9. Cossart P (2011) Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes. Proc NatI Acad Sci USA 108:19484–19491CrossRefGoogle Scholar
  10. Cossart P, Toledo-Arana A (2008) Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect 10:1041–1050CrossRefPubMedGoogle Scholar
  11. Donnelly CW (2001) Listeria monocytogenes: a continuing challenge. Nutr Rev 59:183–194CrossRefPubMedGoogle Scholar
  12. Dortet L, Mostowy S, Cossart P (2012) Listeria and autophagy escape: involvement of InlK, an internalin-like protein. Autophagy 8:132–134CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dussurget O, Cabanes D, Dehoux P, Lecuit M, GenomeConsortium EL, Buchrieser C, Glaser P, Cossart P (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106CrossRefPubMedGoogle Scholar
  14. Faith N, Kathariou S, Cheng Y, Promadej N, Neudeck BL, Zhang Q, Luchansky J, Czuprynski C (2009) The role of L. monocytogenes serotype 4b gtcA in gastrointestinal listeriosis in a/J mice. Food Pathog Dis 6:39–48CrossRefGoogle Scholar
  15. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couvé E, Daruvar A, Dehoux P, Domann E, Domınguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian K-D, Fsihi H, Portillo FG-D, Garrido P, Gautier L, Goebel W, Gómez-López N, Hain T, Hauf J, Jackson D, Jones L-M, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueño E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, Pablos B, Pérez-Diaz J-C, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vázquez-Boland J-A, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852PubMedGoogle Scholar
  16. Hernandez-Flores KG, Vivanco-Cid H (2015) Biological effects of listeriolysin O: implications for vaccination. Biomed Res Int 2015:360741PubMedPubMedCentralGoogle Scholar
  17. Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531CrossRefPubMedGoogle Scholar
  18. Lechowicz J, Krawczyk-Balska A (2015) An update on the transport and metabolism of iron in Listeria monocytogenes: the role of proteins involved in pathogenicity. Biometals 28:587–603CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lindén SK, Bierne H, Sabet C, Png CW, Florin TH, McGuckin MA, Cossart P (2008) Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch Microbiol 190:101–104CrossRefPubMedGoogle Scholar
  20. Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P (1996) E-Cadherin Is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932CrossRefPubMedGoogle Scholar
  21. Niemann HH, Jager V, Butler PJ, van den Heuvel J, Schmidt S, Ferraris D, Gherardi E, Heinz DW (2007) Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB. Cell 130:235–246CrossRefPubMedGoogle Scholar
  22. O’Riordan M, Moors MA, Portnoy DA (2003) Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302:462–464CrossRefPubMedGoogle Scholar
  23. Osanai A, Li SJ, Asano K, Sashinami H, Hu DL, Nakane A (2013) Fibronectin-binding protein, FbpA, is the adhesin responsible for pathogenesis of Listeria monocytogenes infection. Microbiol Immunol 57:253–262CrossRefPubMedGoogle Scholar
  24. Pizarro-Cerda J, Kuhbacher A, Cossart P (2012) Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2:1–17Google Scholar
  25. Rajabian T, Gavicherla B, Heisig M, Muller-Altrock S, Goebel W, Gray-Owen SD, Ireton K (2009) The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol 11:1212–1218CrossRefPubMedPubMedCentralGoogle Scholar
  26. Reglier-Poupet H, Pellegrini E, Charbit A, Berche P (2003) Identification of LpeA, a PsaA-like membrane protein that promotes cell entry by Listeria monocytogenes. Infect Immun 71:474–482CrossRefPubMedPubMedCentralGoogle Scholar
  27. Reis O, Sousa S, Camejo A, Villiers V, Gouin E, Cossart P, Cabanes D (2010) LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 202:551–562CrossRefPubMedGoogle Scholar
  28. Ribet D, Cossart P (2015) How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 17:173–183CrossRefPubMedGoogle Scholar
  29. Seveau S (2014) Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Subcell Biochem 80:161–195CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shen Y, Naujokas M, Park M, Ireton K (2000) InlB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510CrossRefPubMedGoogle Scholar
  31. de Souza SM, Orth K (2015) Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio. Cell Microbiol 17:164–173Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations