Enterococcus spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics (Palmer et al. 2014):
    • Enterococcus faecalis V583 (vancomycin-resistant clinical isolate) chromosome: 3,218,031 bp; 3182 predicted ORFs (Paulsen et al. 2003)

    • Enterococcus faecium TX16 chromosome: 2,698,137 bp; 2703 predicted ORFs (Qin et al. 2012)

  • Cell morphology:
    • Cocci: diplococci or short chains (Fig. 5.1); difficult to distinguish from Streptococcus

  • Gram stain:
    • Gram positive

  • Growth (Ramsey et al. 2014):
    • Facultative anaerobes; catalase negative

    • Can be alpha hemolytic (predominate) or gamma hemolytic on BAP; formerly classified as Group D Streptococcus

    • Can grow in harsh environments – high temperatures (up to 45 °C), low and high pH, and high salt (6.5%) concentrations:
      • Resistant to detergents, ethanol, bile salts (bile esculin), heavy metals, and azide

      • Can be resistant to a wide variety of antibiotics, including penicillins, cephalosporins, aminoglycosides, linezolid, daptomycin, licosamides, and the glycopeptide vancomycin (vancomycin-resistant enterococci, VRE) (Arias and Murray 2012; Hollenbeck and Rice 2012):
        • E. faecium displays more antibiotic resistance than E. faecalis

      • Diverse metabolism: can use glucose, fructose, arabinose, glycerol, lactate, malate, citrate, arginine, and keto acids as energy sources; can be used to classify different species

    • Normal microbiota of mammals, reptiles, birds, and insects:
      • Human gastrointestinal tract, oral cavity, and vagina

    • Found in soil, water, and food as fecal contaminant

    • Biofilm former (see below)

    • >40 species: E. faecalis (90–95%) and E. faecium (5–10%) are the predominant gastrointestinal tract commensals

References

  1. Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278CrossRefPubMedPubMedCentralGoogle Scholar
  2. Booth MC, Bogie CP, Sahl H-G, Siezen RJ, Hatter KL, Gilmore MS (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21:1175–1184CrossRefPubMedGoogle Scholar
  3. Bourgogne A, Singh KV, Fox KA, Pflughoeft KJ, Murray BE, Garsin DA (2007) EbpR is important for biofilm formation by activating expression of the endocarditis and biofilm-associated pilus operon (ebpABC) of Enterococcus faecalis OG1RF. J Bacteriol 189:6490–6493CrossRefPubMedPubMedCentralGoogle Scholar
  4. Clancy KW, Melvin JA, McCafferty DG (2010) Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers 94:385–396CrossRefPubMedPubMedCentralGoogle Scholar
  5. Coburn PS, Pillar CM, Jett BD, Haas W, Gilmore MS (2004) Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306:2270–2272CrossRefPubMedGoogle Scholar
  6. DebRoy S, Gao P, Garsin DA, Harvey BR, Kos V, Nes IF, Solheim M (2014) Transcriptional and post transcriptional control of Enterococcal gene regulation. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  7. Dunny GM, Hancock LE, Shankar N (2014) Enterococcal biofilm structure and role in colonization and disease. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  8. Garsin DA, Frank KL, Ausubel JSFM, Hartke A, Shankar N, Murray BE (2014) Pathogenesis and models of enterococcal infection. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  9. Haas W, Shepard BD, Gilmore MS (2002) Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87CrossRefPubMedGoogle Scholar
  10. Hancock LE, Murray BE, Sillanpää J (2014) Enterococcal cell wall components and structures. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  11. Heikens E, Singh KV, Jacques-Palaz KD, van Luit-Asbroek M, Oostdijk EA, Bonten MJ, Murray BE, Willems RJ (2011) Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect 13:1185–1190CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hendrickx AP, Bonten MJ, van Luit-Asbroek M, Schapendonk CM, Kragten AH, Willems RJ (2008) Expression of two distinct types of pili by a hospital-acquired Enterococcus faecium isolate. Microbiology 154:3212–3223CrossRefPubMedGoogle Scholar
  13. Hendrickx AP, van Luit-Asbroek M, Schapendonk CM, van Wamel WJ, Braat JC, Wijnands LM, Bonten MJ, Willems RJ (2009a) SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium. Infect Immun 77:5097–5106CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hendrickx AP, Willems RJ, Bonten MJ, van Schaik W (2009b) LPxTG surface proteins of enterococci. Trends Microbiol 17:423–430CrossRefPubMedGoogle Scholar
  15. Hendrickx AP, Schapendonk CM, van Luit-Asbroek M, Bonten MJ, van Schaik W, Willems RJ (2010) Differential PilA pilus assembly by a hospital-acquired and a community-derived Enterococcus faecium isolate. Microbiology 156:2649–2659CrossRefPubMedGoogle Scholar
  16. Higuita NIA, Huycke MM (2014) Enterococcal disease, epidemiology, and implications for treatment. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  17. Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3:421–433CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kayaoglu G, Orstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320CrossRefPubMedGoogle Scholar
  19. Mäkinen PL, Clewell DB, An F, Mäkinen KK (1989) Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase ("gelatinase") from Streptococcus faecalis (strain 0G1-10). J Biol Chem 264:3325–3334PubMedGoogle Scholar
  20. Michaux C, Sanguinetti M, Reffuveille F, Auffray Y, Posteraro B, Gilmore MS, Hartke A, Giard JC (2011) SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect Immun 79:2638–2645CrossRefPubMedPubMedCentralGoogle Scholar
  21. Montealegre MC, La Rosa SL, Roh JH, Harvey BR, Murray BE (2015) The Enterococcus faecalis EbpA pilus protein: attenuation of expression, biofilm formation, and adherence to fibrinogen start with the rare initiation codon ATT. MBio 6:e00467–e00415CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nakayama J, Chen S, Oyama N, Nishiguchi K, Azab EA, Tanaka E, Kariyama R, Sonomoto K (2006) Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to Staphylococcal AgrD. J Bacteriol 188:8321–8326CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nallapareddy SR, Qin X, Weinstock GM, Höök M, Murray BE (2000) Enterococcus faecalis adhesin, Ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nallapareddy SR, Weinstock GM, Murray BE (2003) Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family. Mol Microbiol 47:1733–1747CrossRefPubMedGoogle Scholar
  25. Nallapareddy SR, Singh KV, Sillanpaa J, Garsin DA, Hook M, Erlandsen SL, Murray BE (2006) Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Investig 116:2799–2807CrossRefPubMedPubMedCentralGoogle Scholar
  26. Palmer KL, Schaik W, Willems RJL, Gilmore MS (2014) Enterococcal genomics. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  27. Park SY, Kim KM, Lee JH, Seo SJ, Lee IH (2007) Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun 75:1861–1869CrossRefPubMedPubMedCentralGoogle Scholar
  28. Paulsen IT, BanerjeiG L, Myers SA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074CrossRefPubMedGoogle Scholar
  29. Pinkston KL, Gao P, Diaz-Garcia D, Sillanpaa J, Nallapareddy SR, Murray BE, Harvey BR (2011) The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. J Bacteriol 193:4317–4325CrossRefPubMedPubMedCentralGoogle Scholar
  30. Qin X, Singh KV, Weinstock GM, Murray BE (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586CrossRefPubMedPubMedCentralGoogle Scholar
  31. Qin X, Galloway-Peña JR, Sillanpaa J, Roh JH, Nallapareddy SR, Chowdhury S, Bourgogne A, Choudhury T, Muzny DM, Buhay CJ, Ding Y, Dugan-Rocha S, Liu W, Kovar C, Sodergren E, Highlander S, Petrosino JF, Worley KC, Gibbs RA, Weinstock GM, Murray BE (2012) Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol 12:135–155CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ramsey M, Hartke A, Huycke M (2014) The physiology and metabolism of enterococci. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  33. Rich RL, Kreikemeyer B, Owens RT, LaBrenz S, Narayana SVL, Weinstock GM, Murray BE, Höök M (1999) Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J Biol Chem 274:26939–26945CrossRefPubMedGoogle Scholar
  34. Segarra RA, Booth MC, Morales DA, Huycke MM, Gilmore MS (1991) Molecular characterization of the Enterococcus faecalis cytolysin activator. Infect Immun 59:1239–1246PubMedPubMedCentralGoogle Scholar
  35. Shankar J, Walker RG, Ward D, Horsburgh MJ (2012) The Enterococcus faecalis exoproteome: identification and temporal regulation by Fsr. PLoS One 7:e33450CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sillanpaa J, Nallapareddy SR, Prakash VP, Qin X, Hook M, Weinstock GM, Murray BE (2008) Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiol. 154:3199–3211CrossRefGoogle Scholar
  37. Singh KV, Nallapareddy SR, Murray BE (2007) Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J Infect Dis 195:1671–1677CrossRefPubMedPubMedCentralGoogle Scholar
  38. Thurlow LR, Thomas VC, Fleming SD, Hancock LE (2009a) Enterococcus faecalis capsular polysaccharide serotypes C and D and their contributions to host innate immune evasion. Infect Immun 77:5551–5557CrossRefPubMedPubMedCentralGoogle Scholar
  39. Thurlow LR, Thomas VC, Hancock LE (2009b) Capsular polysaccharide production in Enterococcus faecalis and contribution of CpsF to capsule serospecificity. J Bacteriol 191:6203–6210CrossRefPubMedPubMedCentralGoogle Scholar
  40. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penades JR, Lasa I (2001) The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545CrossRefPubMedPubMedCentralGoogle Scholar
  41. Waters CM, Hirt H, McCormick JK, Schlievert PM, Wells CL, Dunny GM (2004) An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol 52:1159–1171CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations