Corynebacterium spp.

  • Douglas I. Johnson


  • Genomics:
    • Corynebacterium diphtheriae: chromosome 2,488,635 bp; 2320 predicted ORFs (Cerdeno-Tarraga et al. 2003)

  • Cell morphology:
    • Rod-shaped cells; irregular, club-shaped (Coryne), or V-shaped arrangements (Fig. 4.1)
      • Can undergo snapping movements after cell division – cause cells to look like Chinese letters or palisades

    • Club shape due to metachromatic polyphosphate granules at ends of cells

  • Gram stain:
    • Gram positive

  • Growth:
    • Aerobes; catalase positive.

    • Found in soil, water, and plants; nonpathogenic species are normal microbiota of the skin and most mucous membranes.

    • >120 species; C. diphtheriae is only a primary pathogen (due to toxin; see below):
      • C. amicolatum, C. striatum, C. urealyticum, C. ulcerans, C. xerosis, C. tuberculosis, and C. jeikeium are opportunistic pathogens of immunosuppressed patients.
        • C. jeikeium: “group JK”; lipophilic multidrug-resistant nosocomial pathogen; frequently associated with bone marrow transplant patients and intravascular devices


  1. Allen CE, Schmitt MP (2015) Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex. J Bacteriol 197:553–562CrossRefPubMedPubMedCentralGoogle Scholar
  2. Burgos JM, Schmitt MP (2016) The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae. J Bacteriol 198:2419–2430CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cerdeno-Tarraga AM, Efstratiou A, Dover LG, Holden MTG, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, Zoysa AD, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523CrossRefPubMedPubMedCentralGoogle Scholar
  4. Gomes DL, Martins CA, Faria LM, Santos LS, Santos CS, Sabbadini PS, Souza MC, Alves GB, Rosa AC, Nagao PE, Pereira GA, Hirata R Jr, Mattos-Guaraldi AL (2009) Corynebacterium diphtheriae as an emerging pathogen in nephrostomy catheter-related infection: evaluation of traits associated with bacterial virulence. J Med Microbiol 58:1419–1427CrossRefPubMedGoogle Scholar
  5. Kunkle CA, Schmitt MP (2005) Analysis of a DtxR-regulated iron transport and siderophore biosynthesis gene cluster in Corynebacterium diphtheriae. J Bacteriol 187:422–433CrossRefPubMedPubMedCentralGoogle Scholar
  6. Mandlik A, Swierczynski A, Das A, Ton-That H (2007) Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64:111–124CrossRefPubMedPubMedCentralGoogle Scholar
  7. Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763CrossRefPubMedGoogle Scholar
  8. Moreira LO, Mattos-Guaraldi AL, Andrade AF (2008) Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 190:521–530CrossRefPubMedGoogle Scholar
  9. Murphy JR (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins 3:294–308CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ott L, Holler M, Gerlach RG, Hensel M, Rheinlaender J, Schaffer TE, Burkovski A (2010) Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiol 10:2CrossRefPubMedPubMedCentralGoogle Scholar
  11. Rogers EA, Das A, Ton-That H (2011) Adhesion by pathogenic corynebacteria. Adv Exp Med Biol 715:91–103CrossRefPubMedGoogle Scholar
  12. Russell LM, Cryz SJJ, Holmes RK (1984) Genetic and biochemical evidence for a siderophore-dependent iron transport system in Corynebacterium diphtheriae. Infect Immun 45:143–149PubMedPubMedCentralGoogle Scholar
  13. Schmitt MP, Holmes RK (1991) Iron-dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect Immun 59:1899–1904PubMedPubMedCentralGoogle Scholar
  14. Simon NC, Aktories K, Barbieri JT (2014) Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 12:599–611CrossRefPubMedGoogle Scholar
  15. Ton-That H, Schneewind O (2003) Assembly of pili on the surface of C. diphtheriae. Mol Microbiol 50:1429–1438CrossRefPubMedGoogle Scholar
  16. Ton-That H, Schneewind O (2004) Assembly of pili in Gram-positive bacteria. Trends Microbiol 12:228–234CrossRefPubMedGoogle Scholar
  17. Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem 255:10717–10720PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations