Chlamydia spp.

  • Douglas I. Johnson


  • Chlamydia trachomatis chromosome: 1,042,512 bp; 887 predicted ORFs (Stephens et al. 1998)

  • Chlamydia pneumoniae chromosome: 1,230,230 bp; 1029 predicted ORFs (Kalman et al. 1999)


  1. Bastidas RJ, Elwell CA, Engel JN, Valdivia RH (2013) Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 3:a010256CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bavoil PM, Byrne GI (2014) Analysis of CPAF mutants: new functions, new questions (the ins and outs of a chlamydial protease). Pathog Dis 71:287–291CrossRefPubMedGoogle Scholar
  3. Damiani MT, Gambarte Tudela J, Capmany A (2014) Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Cell Microbiol 16:1329–1338CrossRefPubMedGoogle Scholar
  4. Frohlich KM, Hua Z, Quayle AJ, Wang J, Lewis ME, Chou CW, Luo M, Buckner LR, Shen L (2014) Membrane vesicle production by Chlamydia trachomatis as an adaptive response. Front Cell Infect Microbiol 4:73CrossRefPubMedPubMedCentralGoogle Scholar
  5. Jorgensen I, Bednar MM, Amin V, Davis BK, Ting JP, McCafferty DG, Valdivia RH (2011) The chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence. Cell Host Microbe 10:21–32CrossRefPubMedPubMedCentralGoogle Scholar
  6. Kalman S, Mitchell W, Marathe R, Lammel C, Jun F, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21:385–389CrossRefPubMedGoogle Scholar
  7. Klockner A, Otten C, Derouaux A, Vollmer W, Buhl H, De Benedetti S, Munch D, Josten M, Molleken K, Sahl HG, Henrichfreise B (2014) AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae. Nat Commun 5:4201CrossRefPubMedPubMedCentralGoogle Scholar
  8. Lane BJ, Mutchler C, Al Khodor S, Grieshaber SS, Carabeo RA (2008) Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog 4:e1000014CrossRefPubMedPubMedCentralGoogle Scholar
  9. Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV, VanNieuwenhze M, Maurelli AT (2014) A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507–510CrossRefPubMedGoogle Scholar
  10. Nans A, Ford C, Hayward RD (2015) Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis. Microbes Infect 17:727–731CrossRefPubMedPubMedCentralGoogle Scholar
  11. Redgrove KA, McLaughlin EA (2014) The role of the immune response in Chlamydia trachomatis infection of the male genital tract: a double-edged sword. Front Immunol 5:534CrossRefPubMedPubMedCentralGoogle Scholar
  12. Snavely EA, Kokes M, Dunn JD, Saka HA, Nguyen BD, Bastidas RJ, McCafferty DG, Valdivia RH (2014) Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathogr Dis 71:336–351CrossRefGoogle Scholar
  13. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759CrossRefPubMedGoogle Scholar
  14. Zhong G, Fan P, Ji H, Dong F, Huang Y (2001) Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193:935–942CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations