Vibrio spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Vibrio cholerae El Tor N16961 chromosomes (Heidelberg et al. 2000):
    • Chromosome 1: 2,961,151 bp; 2770 predicted ORFs; contains most of the genes involved in pathogenicity and essential cell functions

References

  1. Almagro-Moreno S, Pruss K, Taylor RK (2015) Intestinal colonization dynamics of Vibrio cholerae. PLoS Pathog 11:e1004787CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arita M, Takeda T, Honda T, Miwatani T (1986) Purification and characterization of Vibrio cholerae non-O1 heat-stable enterotoxin. Infect Immun 52:45–49PubMedPubMedCentralGoogle Scholar
  3. Awasthi SP, Asakura M, Chowdhury N, Neogi SB, Hinenoy A, Golbar HM, Yamate J, Arakawa E, Tada T, Ramamurthy T, Yamasaki S (2013) Novel cholix toxin variants, ADP-ribosylating toxins in Vibrio cholerae non-O1/non-O139 strains, and their pathogenicity. Infect Immun 81:531–541CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK, Chatterjee NS (2008) Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun 76:4968–4977CrossRefPubMedPubMedCentralGoogle Scholar
  5. Broberg CA, Zhang L, Gonzalez H, Laskowski-Arce MA, Orth K (2010) A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity. Science 329:1660–1662CrossRefPubMedGoogle Scholar
  6. Burdette DL, Seemann J, Orth K (2009) Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 73:639–649CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cámara M, Hardman A, Williams P, Milton D (2002) Quorum sensing in Vibrio cholerae. Nat Genet 32:217–218CrossRefPubMedGoogle Scholar
  8. Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc NatI Acad Sci USA 75:2669–2673CrossRefGoogle Scholar
  9. Chang AK, Kim HY, Park JE, Acharya P, Park IS, Yoon SM, You HJ, Hahm KS, Park JK, Lee JS (2005) Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J Bacteriol 187:6909–6916CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chaudhuri AG, Bhattacharya J, Nair GB, Takeda T, Chakrabarti MK (1998) Rise of cytosolic Ca2+ and activation of membrane-bound guanylyl cyclase activity in rat enterocytes by heat-stable enterotoxin of Vibrio cholerae non-01. FEMS Microbiol Lett 160:125–129CrossRefPubMedGoogle Scholar
  11. Chen C-Y, Wu K-M, Chang Y-C, Chang C-H, Tsai H-C, Liao T-L, Liu Y-M, Chen H-J, Shen AB-T, Li J-C, Su T-L, Shao C-P, Lee C-T, Hor L-I, Tsai S-F (2003) Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13:2577–2587CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clemens J, Shin S, Sur D, Nair GB, Holmgren J (2011) New-generation vaccines against cholera. Nat Rev Gastroenterol Hepatol 8:701–710CrossRefPubMedGoogle Scholar
  13. Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, Maimone F, Fasano A (2001) Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem 276:19160–19165CrossRefPubMedGoogle Scholar
  14. Everiss KD, Hughes KJ, Kovach ME, Peterson KM (1994) The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins. Infect Immun 62:3289–3298PubMedPubMedCentralGoogle Scholar
  15. Faruque SM, Mekalanos JJ (2003) Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol 11:505–510CrossRefPubMedGoogle Scholar
  16. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175CrossRefPubMedGoogle Scholar
  17. Fasano A, Fiorentini C, Donelli G, Uzzau S, Kaper JB, Margaretten K, Ding X, Guandalini S, Comstock L, Goldblum SE (1995) Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Investig 96:710–720CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Lee HJ, Kim SM, Kim KS, Lee KH, Park SJ (2006) Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun 74:5586–5594CrossRefPubMedPubMedCentralGoogle Scholar
  19. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–484CrossRefPubMedGoogle Scholar
  20. Herrera CM, Crofts AA, Henderson JC, Pingali SC, Davies BW, Trent MS (2014) The Vibrio cholerae VprA-VprB two-component system controls virulence through endotoxin modification. mBio 5:e02283–e02214CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hiyoshi H, Kodama T, Saito K, Gotoh K, Matsuda S, Akeda Y, Honda T, Iida T (2011) VopV, an F-actin-binding type III secretion effector, is required for Vibrio parahaemolyticus-induced enterotoxicity. Cell Host Microbe 10:401–409CrossRefPubMedGoogle Scholar
  22. Horseman MA, Surani S (2011) A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int J Infect Dis 15:e157–e166CrossRefPubMedGoogle Scholar
  23. Hsiao A, Liu Z, Joelsson A, Zhu J (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc NatI Acad Sci USA 103:14542–14547CrossRefGoogle Scholar
  24. Hsueh P-R, Lin C-Y, Tang H-J, Lee H-C, Liu J-W, Liu Y-C, Chuang Y-C (2004) Vibrio vulnificus in Taiwan. Emerg Infect Dis 10:1363–1368CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hughes KJ, Everiss KD, Kovach ME, Peterson KM (1995) Isolation and characterization of the Vibrio cholerae acfA gene, required for efficient intestinal colonization. Gene 156:59–61CrossRefPubMedGoogle Scholar
  26. Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723–1733CrossRefPubMedPubMedCentralGoogle Scholar
  27. Khilwani B, Chattopadhyay K (2015) Signaling beyond punching holes: modulation of cellular responses by Vibrio cholerae cytolysin. Toxins 7:3344–3358CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim HR, Rho HW, Jeong MH, Park JW, Kim JS, Park BH, Kim UH, Park SD (1993) Hemolytic mechanism of cytolysin produced from V. vulnificus. Life Sci 53:571–577CrossRefPubMedGoogle Scholar
  29. Kirn TJ, Jude BA, Taylor RK (2005) A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866CrossRefPubMedGoogle Scholar
  30. Kodama T, Rokuda M, Park KS, Cantarelli VV, Matsuda S, Iida T, Honda T (2007) Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cell Microbiol 9:2598–2609CrossRefPubMedGoogle Scholar
  31. Krachler AM, Orth K (2011) Functional characterization of the interaction between bacterial adhesin multivalent adhesion molecule 7 (MAM7) protein and its host cell ligands. J Biol Chem 286:38939–38947CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee JH, Kim MW, Kim BS, Kim SM, Lee BC, Kim TS, Choi SH (2007) Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45:146–152PubMedGoogle Scholar
  33. Lee KJ, Lee NY, Han YS, Kim J, Lee KH, Park SJ (2010) Functional characterization of the IlpA protein of Vibrio vulnificus as an adhesin and its role in bacterial pathogenesis. Infect Immun 78:2408–2417CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lovell CR (2017) Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments. Appl Microbiol Biotechnol 101:1781–1794CrossRefPubMedGoogle Scholar
  35. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743–749CrossRefPubMedGoogle Scholar
  36. Meibom KL, Li XB, Nielsen AT, Wu C-Y, Roseman S, Schoolnik GK (2004) The Vibrio cholerae chitin utilization program. Proc NatI Acad Sci USA 101:2524–2529CrossRefGoogle Scholar
  37. Ohnishi K, Nakahira K, Unzai S, Mayanagi K, Hashimoto H, Shiraki K, Honda T, Yanagihara I (2011) Relationship between heat-induced fibrillogenicity and hemolytic activity of thermostable direct hemolysin and a related hemolysin of Vibrio parahaemolyticus. FEMS Microbiol Lett 318:10–17CrossRefPubMedGoogle Scholar
  38. Paranjpye RN, Strom MS (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. Infect Immun 73:1411–1422CrossRefPubMedPubMedCentralGoogle Scholar
  39. Payne SM, Mey AR, Wyckoff EE (2016) Vibrio iron transport: evolutionary adaptation to life in multiple environments. Microbiol Mol Biol Rev 80:69–90CrossRefPubMedGoogle Scholar
  40. Rhee JE, Rhee JH, Ryu PY, Choi SH (2002) Identification of the cadBA operon from Vibrio vulnificus and its influence on survival to acid stress. FEMS Microbiol Lett 208:245–251CrossRefPubMedGoogle Scholar
  41. Satchell KJ (2015) Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins of Vibrios. Microbiol Spectr 3(3):VE-0002-2014:1–13Google Scholar
  42. Simpson LM, Oliver JD (1987) Ability of Vibrio vulnificus to obtain iron from transferrin and other iron-binding compounds. Curr Microbiol 15:155–158CrossRefGoogle Scholar
  43. Skorupski K, Taylor RK (1997) Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol Microbiol 25:1003–1009CrossRefPubMedGoogle Scholar
  44. Sperandio V, Giron JA, Silveira WD, Kaper JB (1995) The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect Immun 63:4433–44438PubMedPubMedCentralGoogle Scholar
  45. Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJ, Yildiz F, Klose KE (2009) The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol 191:6555–6570CrossRefPubMedPubMedCentralGoogle Scholar
  46. Teschler JK, Zamorano-Sanchez D, Utada AS, Warner CJ, Wong GC, Linington RG, Yildiz FH (2015) Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat Rev Microbiol 13:255–268CrossRefPubMedPubMedCentralGoogle Scholar
  47. Thelin KH, Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64:2853–2856PubMedPubMedCentralGoogle Scholar
  48. Trosky JE, Mukherjee S, Burdette DL, Roberts M, McCarter L, Siegel RM, Orth K (2004) Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279:51953–51957CrossRefPubMedGoogle Scholar
  49. Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB (1993) Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc NatI Acad Sci USA 90:5267–5271CrossRefGoogle Scholar
  50. Utada AS, Bennett RR, Fong JC, Gibiansky ML, Yildiz FH, Golestanian R, Wong GC (2014) Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat Commun 5:4913CrossRefPubMedPubMedCentralGoogle Scholar
  51. Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39:223–235CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wright AC, Morris JG Jr (1991) The extracellular cytolysin of Vibrio vulnificus: inactivation and relationship to virulence in mice. Infect Immun 59:192–197PubMedPubMedCentralGoogle Scholar
  53. Yamamoto S, Okujo N, Yoshida T, Matsuura S, Shinoda S (1994) Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus. J Biochem 115:868–874CrossRefPubMedGoogle Scholar
  54. Yanagihara I, Nakahira K, Yamane T, Kaieda S, Mayanagi K, Hamada D, Fukui T, Ohnishi K, Kajiyama S, Shimizu T, Sato M, Ikegami T, Ikeguchi M, Honda T, Hashimoto H (2010) Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. J Biol Chem 285:16267–16274CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323:269–272CrossRefPubMedGoogle Scholar
  56. Yoshida S, Ogawa M, Mizuguchi Y (1985) Relation of capsular materials and colony opacity to virulence of Vibrio vulnificus. Infect Immun 47:446–451PubMedPubMedCentralGoogle Scholar
  57. Yu B, Cheng HC, Brautigam CA, Tomchick DR, Rosen MK (2011) Mechanism of actin filament nucleation by the bacterial effector VopL. Nat Struct Mol Biol 18:1068–1074CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang L, Orth K (2013) Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol 16:70–77CrossRefPubMedGoogle Scholar
  59. Zhang L, Krachler AM, Broberg CA, Li Y, Mirzaei H, Gilpin CJ, Orth K (2012) Type III effector VopC mediates invasion for Vibrio species. Cell Rep 1:453–460CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations