Treponema spp.

  • Douglas I. Johnson


  • Genomics:
    • Treponema pallidum chromosome: 1,138,006 bp; 1041 predicted ORFs (Fraser et al. 1998)

  • Cell morphology:
    • Thin (0.2 μm), long (6–15 μm) spirochete (Fig. 29.1):
      • Tightly coiled corkscrew shape (Charon et al. 2012)

      • Three to six endoflagella (axial filaments):
        • Anchored at both ends of the cell and run lengthwise between the inner and outer membranes in the periplasmic space; enclosed in outer sheath

        • Causes twisting motion used for motility; important for dissemination in host

        • Endoflagella subunits (Champion et al. 1990; Lafond and Lukehart 2006):
          • FlaB1, FlaB2, and FlaB3 – flagellar core

          • FlaA subunit – outer sheath

    • Outer membrane – very fragile:
      • No LPS (endotoxin)

      • Not tightly associated with underlying peptidoglycan and cellular membrane

  • Gram stain:
    • Gram negative: no LPS

  • Growth:
    • Anaerobic or microaerophilic growth; no catalases or oxidases

    • Slow grower (30–50 h doubling time); metabolically crippled:
      • No Kreb’s cycle or electron transport chain; gets ATP from glycolysis

      • No genes for synthesis of nucleotides, fatty acids, vitamins, cofactors, or amino acids; gets most of its nutrients through transport, not biosynthesis

    • Reservoir: humans (T. pallidum); survives poorly outside human host

    • At least 33 species – four Treponema pallidum subspecies and T. denticola are human pathogens:
      • T. pallidum subsp. pallidum: causes syphilis; sexually transmitted disease

      • T. pallidum subsp. endemicum: causes bejel (endemic syphilis); chronic disease of skin and tissues, usually found in arid environment

      • T. pallidum subsp. carateum: causes pinta; skin disease; usually found in Central America and South America

      • T. pallidum subsp. pertenue: causes yaws; non-sexually transmitted infection of skin, bones, and joints; usually found in the tropics

      • T. denticola: oral pathogen; periodontitis


  1. Alderete JF, Peterson KM, Baseman JB (1988) Affinities of Treponema pallidum for human lactoferrin and transferrin. Genitourin Med 64:359–363PubMedPubMedCentralGoogle Scholar
  2. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (2006) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736CrossRefGoogle Scholar
  3. Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejkova P, Smajs D, Weinstock GM, Norris SJ, Palzkill T (2008) A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 76:1848–1857CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cameron CE (2003) Identification of a Treponema pallidum laminin-binding protein. Infect Immun 71:2525–2533CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cameron CE, Brown EL, Kuroiwa JM, Schnapp LM, Brouwer NL (2004) Treponema pallidum fibronectin-binding proteins. J Bacteriol 186:7019–7022CrossRefPubMedPubMedCentralGoogle Scholar
  6. Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, Lukehart SA (2004) Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol 52:1579–1596CrossRefPubMedGoogle Scholar
  7. Champion CI, Miller JN, Lovett MA, Blanco DR (1990) Cloning, sequencing, and expression of two class B endoflagellar genes of Treponema pallidum subsp. pallidum encoding the 34.5- and 31.0-kilodalton proteins. Infect Immun 58:1697–1704PubMedPubMedCentralGoogle Scholar
  8. Charon NW, Cockburn A, Li C, Liu J, Miller KA, Miller MR, Motaleb MA, Wolgemuth CW (2012) The unique paradigm of spirochete motility and chemotaxis. Annu Rev Microbiol 66:349–370CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chung KY, Kim KS, Lee MG, Chang NS, Lee JB (2002) Treponema pallidum induces up-regulation of interstitial collagenase in human dermal fibroblasts. Acta Derm Venereol 82:174–178CrossRefPubMedGoogle Scholar
  10. Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MA, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD (2011) TP0326, a Treponema pallidum beta-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 80:1496–1515CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388CrossRefPubMedGoogle Scholar
  12. Lafond RE, Lukehart SA (2006) Biological basis for syphilis. Clin Microbiol Rev 19:29–49CrossRefPubMedPubMedCentralGoogle Scholar
  13. Radolf JD, Deka RK, Anand A, Smajs D, Norgard MV, Yang XF (2016) Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 14:744–759CrossRefPubMedPubMedCentralGoogle Scholar
  14. Salazar JC, Hazlett KR, Radolf JD (2002) The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect 4:1133–1140CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations