Advertisement

Shigella spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Shigella flexneri serotype 2a chromosome: 4,607,203 bp; 4434 predicted ORFs (Jin et al. 2002):
      • pCP301 virulence plasmid: 221,618 kb; 267 predicted ORFs
        • Similar virulence plasmids (pINV) are found in all pathogenic Shigella spp. (The et al. 2016).

        • Contains ~31 kb pathogenicity island (SHI) that encodes ~34 genes that are necessary and sufficient for virulence, including the Mxi-Spa Type 3 secretion system (T3SS).

    • Shigella dysenteriae serotype 1 chromosome: 4,369,232 bp; 4557 predicted ORFs (Yang et al. (2005); genomic sequences for S. sonnei and S. boydii are also included).

  • Cell morphology:
    • Rod-shaped cells (Fig. 28.1)

    • No flagellar motility
      • Flagellar genes are inactivated.

      • Actin-based motility (ABM) is used within and between host cells (see below).

    • Lipopolysaccharide (LPS):
      • Immunostimulatory

      • Associated with inflammation and endotoxic shock

  • Gram stain:
    • Gram negative

  • Growth:
    • Facultative anaerobes; oxidase negative.

    • Found in fecal-contaminated food and water; endemic in tropical and sub-tropical regions.

    • Four groups: phylogenetically almost identical to enteroinvasive E. coli (EIEC).

    • Sequence analyses indicate that pathogenic Shigella spp. evolved from noninvasive E. coli ancestor through the acquisition of virulence genes on plasmids and pathogenicity islands by horizontal gene transfer and the loss of anti-virulence genes, such as porins, flagella, and fimbriae (Prosseda et al. 2012; Schroeder and Hilbi 2008).
      • Shigella dysenteriae: Group A (15 serotypes; based on LPS O-antigens)

      • Shigella flexneri: Group B (19 serotypes)

      • Shigella boydii: Group C (19 serotypes)

      • Shigella sonnei: Group D (1 serotype)

References

  1. Adam T (2001) Exploitation of host factors for efficient infection by Shigella. Int J Med Microbiol 291:287–298CrossRefPubMedGoogle Scholar
  2. Agaisse H (2016) Molecular and cellular mechanisms of Shigella flexneri dissemination. Front Cell Infect Microbiol 6:29CrossRefPubMedPubMedCentralGoogle Scholar
  3. Al-Hasani K, Henderson IR, Sakellaris H, Rajakumar K, Grant T, Nataro JP, Robins-Browne R, Adler B (2000) The sigA gene which is borne on the she pathogenicity island of Shigella flexneri 2a encodes an exported cytopathic protease involved in intestinal fluid accumulation. Infect Immun 68:2457–2463CrossRefPubMedPubMedCentralGoogle Scholar
  4. Al-Hasani K, Navarro-Garcia F, Huerta J, Sakellaris H, Adler B (2009) The immunogenic SigA enterotoxin of Shigella flexneri 2a binds to HEp-2 cells and induces fodrin redistribution in intoxicated epithelial cells. PLoS One 4:e8223CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ambrosi C, Pompili M, Scribano D, Limongi D, Petrucca A, Cannavacciuolo S, Schippa S, Zagaglia C, Grossi M, Nicoletti M (2015) The Shigella flexneri OspB effector: an early immunomodulator. Int J Med Microbiol 305:75–84CrossRefPubMedGoogle Scholar
  6. Ashida H, Sasakawa C (2015) Shigella IpaH family effectors as a versatile model for studying pathogenic bacteria. Front Cell Infect Microbiol 5:100PubMedGoogle Scholar
  7. Averhoff P, Kolbe M, Zychlinsky A, Weinrauch Y (2008) Single residue determines the specificity of neutrophil elastase for Shigella virulence factors. J Mol Biol 377:1053–1066CrossRefPubMedGoogle Scholar
  8. Benjelloun-Touimi Z, Sansonetti PJ, Parsot C (1995) SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol Microbiol 17:123–135CrossRefPubMedGoogle Scholar
  9. Bernardini ML, Sanna MG, Fontaine A, Sansonetti PJ (1993) OmpC is involved in invasion of epithelial cells by Shigella flexneri. Infect Immun 61:3625–3635PubMedPubMedCentralGoogle Scholar
  10. Bourdet-Sicard R, Rudiger M, Jockusch BM, Gounon P, Sansonetti PJ, Nhieu GTV (1999) Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J 18:5853–5862CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brotcke Zumsteg A, Goosmann C, Brinkmann V, Morona R, Zychlinsky A (2014) IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis. Cell Host Microbe 15:435–445CrossRefPubMedGoogle Scholar
  12. Burnaevskiy N, Fox TG, Plymire DA, Ertelt JM, Weigele BA, Selyunin AS, Way SS, Patrie SM, Alto NM (2013) Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature 496:106–109CrossRefPubMedPubMedCentralGoogle Scholar
  13. Campbell-Valois FX, Pontier SM (2016) Implications of spatiotemporal regulation of Shigella flexneri type three secretion activity on effector functions: think globally, act locally. Front Cell Infect Microbiol 6:28CrossRefPubMedPubMedCentralGoogle Scholar
  14. Campbell-Valois FX, Sachse M, Sansonetti PJ, Parsot C (2015) Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. MBio 6:e02567–e02514CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carayol N, Tran Van Nhieu G (2013) The inside story of Shigella invasion of intestinal epithelial cells. Cold Spring Harb Perspect Med 3:a016717CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dautin N (2010) Serine protease autotransporters of Enterobacteriaceae (SPATEs): biogenesis and function. Toxins 2:1179–1206CrossRefPubMedPubMedCentralGoogle Scholar
  17. Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G (2016) The multifaceted activity of the VirF regulatory protein in the Shigella lifestyle. Front Mol Biosci 3:61CrossRefPubMedPubMedCentralGoogle Scholar
  18. Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, Carlier MF (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146:1319–1332CrossRefPubMedPubMedCentralGoogle Scholar
  19. Espina M, Olive AJ, Kenjale R, Moore DS, Ausar SF, Kaminski RW, Oaks EV, Middaugh CR, Picking WD, Picking WL (2006) IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect Immun 74:4391–4400CrossRefPubMedPubMedCentralGoogle Scholar
  20. Faherty CS, Harper JM, Shea-Donohue T, Barry EM, Kaper JB, Fasano A, Nataro JP (2012a) Chromosomal and plasmid-encoded factors of Shigella flexneri induce secretogenic activity ex vivo. PLoS One 7:e49980CrossRefPubMedPubMedCentralGoogle Scholar
  21. Faherty CS, Redman JC, Rasko DA, Barry EM, Nataro JP (2012b) Shigella flexneri effectors OspE1 and OspE2 mediate induced adherence to the colonic epithelium following bile salts exposure. Mol Microbiol 85:107–121CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fasano A, Noriega FR, Maneval DRJ, Chanasongcram S, Russell R, Guandalini S, Levine MM (1995) Shigella enterotoxin 1: an enterotoxin of Shigella flexneri 2a active in rabbit small intestine in vivo and in vitro. J Clin Investig 95:2853–2861CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fris ME, Murphy ER (2016) Riboregulators: fine-tuning virulence in Shigella. Front Cell Infect Microbiol 6:2CrossRefPubMedPubMedCentralGoogle Scholar
  24. Haider K, Hossain A, Wanke C, Qadri F, Ali S, Nahar S (1993) Production of mucinase and neuraminidase and binding of Shigella to intestinal mucin. J Diarrhoeal Dis Res 11:88–92PubMedGoogle Scholar
  25. Handa Y, Suzuki M, Ohya K, Iwai H, Ishijima N, Koleske AJ, Fukui Y, Sasakawa C (2007) Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nat Cell Biol 9:121–128CrossRefPubMedGoogle Scholar
  26. Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP (1999) Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 67:5587–5596PubMedPubMedCentralGoogle Scholar
  27. Iwai H, Kim M, Yoshikawa Y, Ashida H, Ogawa M, Fujita Y, Muller D, Kirikae T, Jackson PK, Kotani S, Sasakawa C (2007) A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell 130:611–623CrossRefPubMedGoogle Scholar
  28. Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, Wang J, Liu H, Yang J, Yang F, Zhang X, Zhang J, Yang G, Wu H, Qu D, Dong J, Sun L, Xue Y, Zhao A, Gao Y, Zhu J, Kan B, Ding K, Chen S, Cheng H, Yao Z, He i, Chen R, Ma D, Qiang B, Wen Y, Hou Y, Yu J (2002) Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30:4432–4441CrossRefPubMedPubMedCentralGoogle Scholar
  29. Killackey SA, Sorbara MT, Girardin SE (2016) Cellular aspects of Shigella pathogenesis: focus on the manipulation of host cell processes. Front Cell Infect Microbiol 6:38CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kim DW, Lenzen G, Page A-L, Legrain P, Sansonetti PJ, Parsot C (2005) The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc NatI Acad Sci USA 102:14046–14051CrossRefGoogle Scholar
  31. Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, Akakura R, Yoshida M, Kawalec M, Reichhart JM, Mizushima T, Sasakawa C (2013) The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13:570–583CrossRefPubMedGoogle Scholar
  32. Lee MS, Koo S, Jeong DG, Tesh VL (2016) Shiga toxins as multi-functional proteins: induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins 8:77CrossRefPubMedCentralGoogle Scholar
  33. Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou J-M, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315:1000–1003CrossRefPubMedGoogle Scholar
  34. Lindberg AA, Brown JE, Stromberg N, Westling-Ryd M, Schultz JE, Karlsson KA (1987) Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785PubMedGoogle Scholar
  35. Mattock E, Blocker AJ (2017) How do the virulence factors of Shigella work together to cause disease? Front Cell Infect Microbiol 7:64CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mellouk N, Weiner A, Aulner N, Schmitt C, Elbaum M, Shorte SL, Danckaert A, Enninga J (2014) Shigella subverts the host recycling compartment to rupture its vacuole. Cell Host Microbe 16:517–530CrossRefPubMedGoogle Scholar
  37. Melton-Celsa AR (2014) Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr 2(2): 1–13. doi: 10.1128/microbiolspec.EHEC-0024-2013
  38. Mounier J, Popoff MR, Enninga J, Frame MC, Sansonetti PJ, Van Nhieu GT (2009) The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 5:e1000271CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nataro JP, Seriwatana J, Fasano A, Maneval DR, Guers LD, Noriega F, Dubovsky F, Levine MM, Morris JGJ (1995) Identification and cloning of a novel plasmid-encoded enterotoxin of enteroinvasive Escherichia coli and Shigella strains. Infect Immun 63:4721–4728PubMedPubMedCentralGoogle Scholar
  40. Newton HJ, Pearson JS, Badea L, Kelly M, Lucas M, Holloway G, Wagstaff KM, Dunstone MA, Sloan J, Whisstock JC, Kaper JB, Robins-Browne RM, Jans DA, Frankel G, Phillips AD, Coulson BS, Hartland EL (2010) The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65. PLoS Pathog 6:e1000898CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nhieu GTV, Caron E, Hall A, Sansonetti PJ (1999) IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J 18:3249–3262CrossRefGoogle Scholar
  42. Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B (2002) Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21:5069–5078CrossRefPubMedPubMedCentralGoogle Scholar
  43. Picker MA, Wing HJ (2016) H-NS, its family members and their regulation of virulence genes in Shigella species. Genes (Basel) 7:112CrossRefGoogle Scholar
  44. Picking WL, Picking WD (2016) The many faces of IpaB. Front Cell Infect Microbiol 6:12CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prosseda G, Di Martino ML, Campilongo R, Fioravanti R, Micheli G, Casalino M, Colonna B (2012) Shedding of genes that interfere with the pathogenic lifestyle: the Shigella model. Res Microbiol 163:399–406CrossRefPubMedGoogle Scholar
  46. Rottner K, Stradal TE, Wehland J (2005) Bacteria-host-cell interactions at the plasma membrane: stories on actin cytoskeleton subversion. Dev Cell 9:3–17CrossRefPubMedGoogle Scholar
  47. Sanada T, Kim M, Mimuro H, Suzuki M, Ogawa M, Oyama A, Ashida H, Kobayashi T, Koyama T, Nagai S, Shibata Y, Gohda J, Inoue J, Mizushima T, Sasakawa C (2012) The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483:623–626CrossRefPubMedGoogle Scholar
  48. Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21:134–156CrossRefPubMedPubMedCentralGoogle Scholar
  49. The HC, Thanh DP, Holt KE, Thomson NR, Baker S (2016) The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol 14:235–250CrossRefPubMedGoogle Scholar
  50. Valencia-Gallardo CM, Carayol N, Tran Van Nhieu G (2015) Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cells. Cell Microbiol 17:174–182CrossRefPubMedGoogle Scholar
  51. Wei Y, Murphy ER (2016) Shigella iron acquisition systems and their regulation. Front Cell Infect Microbiol 6:18PubMedPubMedCentralGoogle Scholar
  52. Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, Tang X, Wang J, Xiong Z, Dong J, Xue Y, Zhu Y, Xu X, Sun L, Chen S, Nie H, Peng J, Xu J, Wang Y, Yuan Z, Wen Y, Yao Z, Shen Y, Qiang B, Hou Y, Yu J, Jin Q (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33:6445–6458CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations