Salmonella spp.

  • Douglas I. Johnson


  • Genomics:
    • Salmonella enterica serovar Typhimurium LT2 chromosome: 4,857,432 bp; 4,489 predicted ORFs (McClelland et al. 2001)

    • Salmonella enterica serovar Typhi CT18 chromosome: 4,809,037 bp; 4599 predicted ORFs (Parkhill et al. 2001)

  • Cell morphology:
    • Rod-shaped cells (Fig. 27.1)

    • Flagella (peritrichous (Fig. 27.1)):
      • Swimming motility is essential for Salmonella cells to approach and attach to the intestinal epithelium

      • Immunostimulatory

    • Lipopolysaccharide (LPS): immunostimulatory; associated with inflammation and endotoxic shock

  • Gram stain:
    • Gram negative

  • Growth:
    • Facultative anaerobes: catalase positive, oxidase positive

    • Reservoirs: poultry, pet birds, reptiles pet turtles, livestock; contaminated soil and water

    • Excellent biofilm formers (see below)

    • Two species, six subspecies:
      • Salmonella enterica subspecies: enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV), indica (VI)
        • S. Enteritidis: Salmonella enterica subspecies enterica serovar Enteritidis

        • S. Typhimurium: Salmonella enterica subspecies enterica serovar Typhimurium

        • S. Typhi: Salmonella enterica subspecies enterica serovar Typhi

        • S. Paratyphi: Salmonella enterica subspecies enterica serovar Paratyphi

      • Salmonella bongori (subspecies V; rare)

      • >2500 serotypes; 99% of clinical isolates belong to subspecies I enterica
        • Based on O antigens (LPS) and H antigens (flagella)

        • Also S. Typhi Vi antigens (capsule)


  1. Bakowski MA, Cirulis JT, Brown NF, Finlay BB, Brumell JH (2007) SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cell Microbiol 9:2839–2855CrossRefPubMedGoogle Scholar
  2. Bakshi CS, Singh VP, Wood MW, Jones PW, Wallis TS, Galyov EE (2000) Identification of SopE2: a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol 182:2341–2344CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bäumler AJ, Tsolis RM, Bowe FA, Kusters JG, Hoffmann S, Heffron F (1996a) The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun 64:61–68PubMedPubMedCentralGoogle Scholar
  4. Bäumler AJ, Tsolis RM, Heffron F (1996b) The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches. Proc NatI Acad Sci USA 93:279–283CrossRefGoogle Scholar
  5. Brodsky IE, Ghori N, Falkow S, Monack D (2005) Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Mol Microbiol 55:954–972CrossRefPubMedGoogle Scholar
  6. Brumell JH, Kujat-Choy S, Brown NF, Vallance BA, Knodler LA, Finlay BB (2003) SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 4:36–48CrossRefPubMedGoogle Scholar
  7. Chessa D, Winter MG, Jakomin M, Baumler AJ (2009) Salmonella enterica serotype typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa. Mol Microbiol 71:864–875CrossRefPubMedGoogle Scholar
  8. Collinson SK, Clouthier SC, Doran JL, Banser PA, Kay WW (1996) Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178:662–667CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deng L, Song J, Gao X, Wang J, Yu H, Chen X, Varki N, Naito-Matsui Y, Galan JE, Varki A (2014) Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi. Cell 159:1290–1299CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dorsey CW, Laarakker MC, Humphries AD, Weening EH, Baumler AJ (2005) Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol 57:196–211CrossRefPubMedGoogle Scholar
  11. Fabrega A, Vila J (2013) Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26:308–341CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fu Y, Galán JE (1999) A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host cell recovery after bacterial invasion. Nature 401:293–297CrossRefPubMedGoogle Scholar
  13. Galán JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86CrossRefPubMedGoogle Scholar
  14. Gerlach RG, Jackel D, Stecher B, Wagner C, Lupas A, Hardt WD, Hensel M (2007) Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cell Microbiol 9:1834–1850CrossRefPubMedGoogle Scholar
  15. Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc NatI Acad Sci USA 100:3677–3682CrossRefGoogle Scholar
  16. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galán JE (1998) Salmonella typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826CrossRefPubMedGoogle Scholar
  17. Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc NatI Acad Sci USA 96:2396–2401CrossRefGoogle Scholar
  18. Ho DK, Jarva H, Meri S (2010) Human complement factor H binds to outer membrane protein Rck of Salmonella. J Immunol 185:1763–1769CrossRefPubMedGoogle Scholar
  19. Jackson LK, Nawabi P, Hentea C, Roark EA, Haldar K (2008) The Salmonella virulence protein SifA is a G protein antagonist. Proc NatI Acad Sci USA 105:14141CrossRefGoogle Scholar
  20. Kaniga K, Uralil J, Bliska JB, Galán JE (1996) A secreted tyrosine phosphatase with modular effector domains encoded by the bacterial pathogen Salmonella typhimurium. Mol Microbiol 21:633–641CrossRefPubMedGoogle Scholar
  21. Keestra-Gounder AM, Tsolis RM, Baumler AJ (2015) Now you see me, now you don’t: the interaction of Salmonella with innate immune receptors. Nat Rev Microbiol 13:206–216CrossRefPubMedGoogle Scholar
  22. Kingsley RA, Santos RL, Keestra AM, Adams LG, Bäumler AJ (2002) Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol Microbiol 43:895–905CrossRefPubMedGoogle Scholar
  23. Kingsley RA, Humphries AD, Weening EH, Zoete MR, Winter S, Papaconstantinopoulou A, Dougan G, Baumler AJ (2003) Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype Typhimurium: identification of intestinal colonization and persistence determinants. Infect Immun 71:629–640CrossRefPubMedPubMedCentralGoogle Scholar
  24. Korhonen TK, Lounatmaa K, Ranta H, Kuusi N (1980) Characterization of type1 pili of Salmonella typhimurium LT2. J Bacteriol 144:800–805PubMedPubMedCentralGoogle Scholar
  25. Kuhle V, Hensel M (2002) SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 4:813–824CrossRefPubMedGoogle Scholar
  26. Lambert MA, Smith SG (2009) The PagN protein mediates invasion via interaction with proteoglycan. FEMS Microbiol Lett 297:209–216CrossRefPubMedGoogle Scholar
  27. Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penades JR, Lasa I (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339CrossRefPubMedGoogle Scholar
  28. Lesnick ML, Reiner NE, Fierer J, Guiney DG (2001) The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 39:1464–1470CrossRefPubMedGoogle Scholar
  29. Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, Holden DW (2008) SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol 67:1371–1383CrossRefPubMedPubMedCentralGoogle Scholar
  30. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856CrossRefPubMedGoogle Scholar
  31. Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI (2003) Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol 48:401–415CrossRefPubMedGoogle Scholar
  32. Muller SI, Valdebenito M, Hantke K (2009) Salmochelin, the long-overlooked catecholate siderophore of Salmonella. Biometals 22:691–695CrossRefPubMedGoogle Scholar
  33. Myeni SK, Zhou D (2010) The C terminus of SipC binds and bundles F-actin to promote Salmonella invasion. J Biol Chem 285:13357–13363CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nikolaus T, Deiwick J, Rappl C, Freeman JA, Schroder W, Miller SI, Hensel M (2001) SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183:6036–6045CrossRefPubMedPubMedCentralGoogle Scholar
  35. Oscarsson J, Westermark M, Lofdahl S, Olsen B, Palmgren H, Mizunoe Y, Wai SN, Uhlin BE (2002) Characterization of a pore-forming cytotoxin expressed by Salmonella enterica serovars Typhi and Paratyphi A. Infect Immun 70:5759–5769CrossRefPubMedPubMedCentralGoogle Scholar
  36. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MTG, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Kroghk A, Larsenk TS, Leather S, Moule S, O’Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852CrossRefPubMedGoogle Scholar
  37. Patel JC, Galán JE (2006) Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 175:453–463CrossRefPubMedPubMedCentralGoogle Scholar
  38. Patel S, McCormick BA (2014) Mucosal inflammatory response to Salmonella typhimurium infection. Front Immunol 5:311CrossRefPubMedPubMedCentralGoogle Scholar
  39. Patel JC, Rossanese OW, Galán JE (2005) The functional interface between Salmonella and its host cell: opportunities for therapeutic intervention. Trends Pharmacol Sci 26:564–570CrossRefPubMedGoogle Scholar
  40. Pollack JR, Neilands JB (1970) Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun 38:989–992CrossRefPubMedGoogle Scholar
  41. Raffatellu M, Chessa D, Wilson RP, Tukel C, Akcelik M, Baumler AJ (2006) Capsule-mediated immune evasion: a new hypothesis explaining aspects of typhoid fever pathogenesis. Infect Immun 74:19–27CrossRefPubMedPubMedCentralGoogle Scholar
  42. Raghunathan D, Wells TJ, Morris FC, Shaw RK, Bobat S, Peters SE, Paterson GK, Jensen KT, Leyton DL, Blair JM, Browning DF, Pravin J, Flores-Langarica A, Hitchcock JR, Moraes CT, Piazza RM, Maskell DJ, Webber MA, May RC, MacLennan CA, Piddock LJ, Cunningham AF, Henderson IR (2011) SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection. Infect Immun 79:4342–4352CrossRefPubMedPubMedCentralGoogle Scholar
  43. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc NatI Acad Sci USA 100:3584–3588CrossRefGoogle Scholar
  44. Rosselin M, Virlogeux-Payant I, Roy C, Bottreau E, Sizaret PY, Mijouin L, Germon P, Caron E, Velge P, Wiedemann A (2010) Rck of Salmonella enterica, subspecies enterica serovar enteritidis, mediates zipper-like internalization. Cell Res 20:647–664CrossRefPubMedGoogle Scholar
  45. Ruiz-Albert J, Yu X-J, Beuzón CR, Blakey AN, Galyov EE, Holden DW (2002) Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol Microbiol 44:645–661CrossRefPubMedGoogle Scholar
  46. Song J, Gao X, Galan JE (2013) Structure and function of the Salmonella Typhi chimaeric A(2)B(5) typhoid toxin. Nature 499:350–354CrossRefPubMedPubMedCentralGoogle Scholar
  47. Spano S, Galan JE (2008) A novel pathway for exotoxin delivery by an intracellular pathogen. Curr Opin Microbiol 11:15–20CrossRefPubMedPubMedCentralGoogle Scholar
  48. Spano S, Ugalde JE, Galan JE (2008) Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell Host Microbe 3:30–38CrossRefPubMedGoogle Scholar
  49. Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N, Simmonds M, Stevens K, Maloy S, Parkhill J, Dougan G, Bäumler AJ (2001) Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69:2894–2901CrossRefPubMedPubMedCentralGoogle Scholar
  50. Uchiya K, Barbieri MA, Funato K, Shah AH, Stahl PD, Groisman EA (1999) A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18:3924–3933CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, Dinauer MC, Mastroeni P, Fang FC (2000) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658CrossRefPubMedGoogle Scholar
  52. Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chausse AM, Grepinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I (2012) Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. MicrobiologyOpen 1:243–258CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wagner C, Hensel M (2011) Adhesive mechanisms of Salmonella enterica. Adv Exp Med Biol 715:17–34CrossRefPubMedGoogle Scholar
  54. Wallace AJ, Stillman TJ, Atkins A, Jamieson SJ, Bullough PA, Green J, Artymiuk PJ (2000) E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100:265–276CrossRefPubMedGoogle Scholar
  55. Wiedemann A, Virlogeux-Payant I, Chausse AM, Schikora A, Velge P (2014) Interactions of Salmonella with animals and plants. Front Microbiol 5:791PubMedGoogle Scholar
  56. Winter SE, Winter MG, Thiennimitr P, Gerriets VA, Nuccio SP, Russmann H, Baumler AJ (2009) The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol 74:175–193CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wolska KI, Grudniak AM, Rudnicka Z, Markowska K (2016) Genetic control of bacterial biofilms. J Appl Genet 57:225–238CrossRefPubMedGoogle Scholar
  58. Zhang X-L, Tsui ISM, Yip CMC, Fung AWY, Wong DK-H, Dai X, Yang Y, Hackett J, Morris C (2000) Salmonella enterica serovar Typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 68:3067–3073CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhang Y, Higashide WM, McCormick BA, Chen J, Zhou D (2006) The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol 62:786–793CrossRefPubMedGoogle Scholar
  60. Zhou D, Mooseker M, Galán JE (1999) Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283:2092–2095CrossRefPubMedGoogle Scholar
  61. Zhou D, Chen L-M, Hernandez L, Shears SB, Galán JE (2001) A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39:248–259CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations