Advertisement

Rickettsia spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Rickettsia prowazekii chromosome: 1,111,523 bp; 834 predicted ORFs (Andersson et al. 1998)

    • Rickettsia rickettsii chromosome: 1,257,710 bp; 1218 predicted ORFs (Ellison et al. 2008)

  • Cell morphology:
    • Small coccobacilli (Fig. 26.1)

    • Surrounded by LPS and protein-containing S-layer

  • Gram stain:
    • Gram negative

  • Growth:
    • Aerobes

    • Obligate intracellular pathogens

    • Reservoirs: mammals and some arthropods

    • Can be transmitted by arthropods such as lice, ticks, fleas, and chiggers

    • Two groups of mammalian pathogenic species:
      • Typhus group (TG) – two species; cause typhus worldwide:
        • Rickettsia prowazekii: epidemic typhus fever

        • Rickettsia typhi: endemic murine typhus

      • Spotted fever group (SFG) – at least 20 species; cause spotted fevers in different geographic locations:
        • Rickettsia rickettsii: Rocky Mountain spotted fever (North America)

        • Rickettsia sibirica: Siberian tick typhus

        • Rickettsia australis: Queensland tick typhus

        • Rickettsia japonica: Oriental spotted fever

        • Rickettsia africae: African tick-bite fever

        • Rickettsia felis: cat-flea typhus; emerging worldwide pathogen

References

  1. Alix E, Chesnel L, Bowzard BJ, Tucker AM, Delprato A, Cherfils J, Wood DO, Kahn RA, Roy CR (2012) The capping domain in RalF regulates effector functions. PLoS Pathog 8:e1003012CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponte T, Alsmark UCM, Podowski RM, Naeslund AK, Eriksson A-S, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–143CrossRefPubMedGoogle Scholar
  3. Balraj P, Renesto P, Raoult D (2009) Advances in rickettsia pathogenicity. Ann N Y Acad Sci 1166:94–105CrossRefPubMedGoogle Scholar
  4. Chan YG, Riley SP, Martinez JJ (2010) Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front Microbiol 1:139CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Porcella SF, Hackstadt T (2008) Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 76:542–550CrossRefPubMedGoogle Scholar
  6. Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF (2015) Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 39:47–80PubMedGoogle Scholar
  7. Gouin E, Egile C, Dehoux P, Villiers V, Adams J, Gertler F, Li R, Cossart P (2004) The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457–461CrossRefPubMedGoogle Scholar
  8. Heinzen RA, Hayes SF, Peacock MG, Hackstadt T (1993) Directional actin polymerization associated with spotted fever group Rickettsia infection cells. Infect Immun 61:1926–1935PubMedPubMedCentralGoogle Scholar
  9. Jeng RL, Goley ED, D'Alessio JA, Chaga OY, Svitkina TM, Borisy GG, Heinzen RA, Welch MD (2004) A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol 6:761–769CrossRefPubMedGoogle Scholar
  10. Li H, Walker DH (1998) rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb Pathog 24:289–298CrossRefPubMedGoogle Scholar
  11. Martinez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P (2005) Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123:1013–1023CrossRefPubMedGoogle Scholar
  12. Rahman MS, Gillespie JJ, Kaur SJ, Sears KT, Ceraul SM, Beier-Sexton M, Azad AF (2013) Rickettsia typhi possesses phospholipase A2 enzymes that are involved in infection of host cells. PLoS Pathog 9:e1003399CrossRefPubMedPubMedCentralGoogle Scholar
  13. Renesto P, Dehoux P, Gouin E, Touqui L, Cossart P, Raoult D (2003) Identification and characterization of a phospholipase D–superfamily gene in Rickettsiae. J Infect Dis 188:1276–1283CrossRefPubMedGoogle Scholar
  14. Renesto P, Samson L, Ogata H, Azza S, Fourquet P, Gorvel J-P, Heinzen RA, Raoult D (2006) Identification of two putative rickettsial adhesins by proteomic analysis. Res Microbiol 157:605–612CrossRefPubMedGoogle Scholar
  15. Sahni SK, Narra HP, Sahni A, Walker DH (2013) Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 8:1265–1288CrossRefPubMedPubMedCentralGoogle Scholar
  16. Uchiyama T, Kawano H, Kusuhara Y (2006) The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect 8:801–809CrossRefPubMedGoogle Scholar
  17. Vellaiswamy M, Kowalczewska M, Merhej V, Nappez C, Vincentelli R, Renesto P, Raoult D (2011) Characterization of rickettsial adhesin Adr2 belonging to a new group of adhesins in α-proteobacteria. Microb Pathog 50:233–242CrossRefPubMedGoogle Scholar
  18. Walker TS (1984) Rickettsial interactions with human endothelial cells in vitro: adherence and entry. Infect Immun 44:205–210PubMedPubMedCentralGoogle Scholar
  19. Whitworth T, Popov VL, Yu XJ, Walker DH, Bouyer DH (2005) Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar typhimurium mediates phagosomal escape. Infect Immun 73:6668–6673CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations