Pseudomonas spp.

  • Douglas I. Johnson


  • Genomics:
    • Pseudomonas aeruginosa chromosome: 6,264,403 bp; 5570 predicted ORFs (Stover et al. 2000)

  • Cell morphology:
    • Rod-shaped cells (Fig. 25.1)

    • Flagellum: monotrichous (P. aeruginosa); other species can be lophotrichous:
      • Swimming motility

      • Important role in adherence; immunostimulatory

    • Type 4 pili:
      • Several pili at the same pole as the flagellum

      • Essential function in adherence; immunostimulatory

      • Responsible for twitching motility; due to attachment/retraction of pili

    • Capsule:
      • Can form an alginate-based pseudocapsule during chronic infections (see below)

    • Lipopolysaccharide (LPS):
      • Associated with inflammation and endotoxic shock

      • Also functions in adherence (see below)

  • Gram stain:
    • Gram negative

  • Growth:
    • Aerobes; catalase positive, oxidase positive; respiration (no fermentation)

    • Ubiquitous in environment; soil and water; transient microbiota in humans

    • Can infect animals, plants, and nematodes

    • Produces several pigments; can be useful for species identification
      • Pyocyanin: blue green
        • Redox-active metabolite; virulence factor

      • Pyoverdine: yellow green; fluorescent
        • Fe+3 siderophore (also pyochelin)

      • Pyorubin: red

      • Pyomelanin: brown black

    • Excellent biofilm formers: can tolerate poorly oxygenated atmospheres (see below)

    • >190 species; one major human pathogen – Pseudomonas aeruginosa


  1. Adamo R, Sokol S, Soong G, Gomez MI, Prince A (2004) Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am J Respir Cell Mol Biol 30:627–634CrossRefPubMedGoogle Scholar
  2. Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20CrossRefPubMedGoogle Scholar
  3. Barequet IS, Bourla N, Pessach YN, Safrin M, Yankovich D, Ohman DE, Rosner M, Kessler E (2012) Staphylolysin is an effective therapeutic agent for Staphylococcus aureus experimental keratitis. Graefes Arch Clin Exp Ophthalmol 250:223–229CrossRefPubMedGoogle Scholar
  4. Casilag F, Lorenz A, Krueger J, Klawonn F, Weiss S, Haussler S (2015) The LasB elastase of Pseudomonas aeruginosa acts in concert with alkaline protease AprA to prevent flagellin-mediated immune recognition. Infect Immun 84:162–171CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R (2016) Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 306:48–58CrossRefPubMedGoogle Scholar
  6. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645CrossRefPubMedGoogle Scholar
  7. Engel J, Balachandran P (2009) Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12:61–66CrossRefPubMedGoogle Scholar
  8. Engel LS, Hill JM, Caballero AR, Green LC, O’Callaghan RJ (1998) Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem 273:16792–16797CrossRefPubMedGoogle Scholar
  9. Ertesvag H (2015) Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 6:523PubMedPubMedCentralGoogle Scholar
  10. Filloux A, Michel G, Bally M (1998) GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 22:177–198CrossRefPubMedGoogle Scholar
  11. Ganesan AK, Vincent TS, Olson JC, Barbieri JT (1999) Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J Biol Chem 274:21823–21829CrossRefPubMedGoogle Scholar
  12. Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173CrossRefPubMedGoogle Scholar
  13. Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372CrossRefPubMedGoogle Scholar
  14. Grishin AV, Krivozubov MS, Karyagina AS, Gintsburg AL (2015) Pseudomonas aeruginosa lectins as targets for novel antibacterials. Acta Nat 7:29–41Google Scholar
  15. Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa – a review. Gene 192:99–108CrossRefPubMedGoogle Scholar
  16. Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kessler E, Safrin M, Gustin JK, Ohman DE (1998) Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J Biol Chem 273:30225–30231CrossRefPubMedGoogle Scholar
  18. Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K (2008) A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol 10:1491–1504CrossRefPubMedGoogle Scholar
  19. Liu YC, Chan KG, Chang CY (2015) Modulation of host biology by Pseudomonas aeruginosa quorum sensing signal molecules: messengers or traitors. Front Microbiol 6:1226PubMedPubMedCentralGoogle Scholar
  20. Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefPubMedGoogle Scholar
  21. Malloy JL, Veldhuizen RA, Thibodeaux BA, O'Callaghan RJ, Wright JR (2005) Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am J Phys Lung Cell Mol Phys 288:L409–L418Google Scholar
  22. Michalska M, Wolf P (2015) Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 6:963CrossRefPubMedPubMedCentralGoogle Scholar
  23. Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510CrossRefPubMedGoogle Scholar
  24. Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 13:1666–1681CrossRefPubMedGoogle Scholar
  25. Ostroff RM, Vasil AI, Vasil ML (1990) Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 172:5915–5923CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pessi G, Haas D (2000) Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J Bacteriol 182:6940–6949CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rada B, Gardina P, Myers TG, Leto TL (2011) Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin. Mucosal Immunol 4:158–171CrossRefPubMedGoogle Scholar
  28. Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774CrossRefPubMedGoogle Scholar
  29. Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T (2015) Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J Mol Biol 427:3628–3645CrossRefPubMedGoogle Scholar
  30. Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K, Finck-Barbancon V, Buchaklian A, Lei M, Long RM, Wiener-Kronish J, Sawa T (2003) The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22:2959–2969CrossRefPubMedPubMedCentralGoogle Scholar
  31. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc NatI Acad Sci USA 103:8487–8492CrossRefGoogle Scholar
  32. Sousa AM, Pereira MO (2014) Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs – a review. Pathogens 3:680–703CrossRefPubMedPubMedCentralGoogle Scholar
  33. Spencer J, Murphy LM, Conners R, Sessions RB, Gamblin SJ (2010) Crystal structure of the LasA virulence factor from Pseudomonas aeruginosa: substrate specificity and mechanism of M23 metallopeptidases. J Mol Biol 396:908–923CrossRefPubMedGoogle Scholar
  34. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK-S, Wu Z, Paulsenk IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964CrossRefPubMedGoogle Scholar
  35. Sun J, Barbieri JT (2003) Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J Biol Chem 278:32794–32800CrossRefPubMedGoogle Scholar
  36. Tang A, Caballero AR, Marquart ME, O'Callaghan RJ (2013) Pseudomonas aeruginosa small protease (PASP), a keratitis virulence factor. Invest Ophthalmol Vis Sci 54:2821–2828CrossRefPubMedPubMedCentralGoogle Scholar
  37. Whitfield GB, Marmont LS, Howell PL (2015) Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front Microbiol 6:471CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW (1998) ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc NatI Acad Sci USA 95:13899–13904CrossRefGoogle Scholar
  39. Zhang L, Franks J, Stolz DB, Conway JF, Thibodeau PH (2014) Inducible polymerization and two-dimensional assembly of the repeats-in-toxin (RTX) domain from the Pseudomonas aeruginosa alkaline protease. Biochemist 53:6452–6462CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations