Neisseria spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Neisseria gonorrhoeae (Ng) NCCP11945 chromosome: 2,232,025 bp; 2,662 predicted ORFs (Chung et al. 2008); polyploid containing two to four genome equivalents (Tobiason and Seifert 2010)

    • Neisseria meningitidis (Nm) serogroup A chromosome: 2,184,406 bp; 2,121 predicted ORFs (Parkhill et al. 2000); polyploid containing three to five genome equivalents (Tobiason and Seifert 2010)

  • Cell morphology:
    • Diplococci (small cells in Fig. 22.1) with flattened adjacent sides (Fig. 22.2):
      • Ng: gonococcus

      • Nm: meningococcus

    • Type IV pili (Tfp), present in Nm and Ng (Fig. 22.2):
      • Essential function in adherence (see below)

      • Responsible for twitching motility; due to attachment/retraction of pili

      • Important in transmission and colonization

    • Capsule, only present in Nm:
      • Responsible for the high level of virulence associated with Nm

      • Allows dissemination and survival within the bloodstream (see below)

    • Lipooligosaccharide (LOS) (Tong et al. 2002; Tsai 2001):
      • Atypical LPS; highly branched oligosaccharides

      • Undergoes antigenic variations that aid in immune evasion (see below)

  • Gram stain:
    • Gram negative

  • Growth:
    • Obligate aerobes.

    • Fastidious: requires hemoglobin, NAD (V factor), and iron [(found in chocolate agar plates (CAP)].

    • Capnophilic: requires 5–10% CO2 in vitro.

    • Temperature sensitive: clinical samples must be stored at 37 °C for survival.

    • Fragile growth: susceptible to temperature changes, drying, UV light, and other environmental conditions; does not exist outside human host niches.

    • Biofilms:
      • Ng can form biofilms during infection.

      • May play a role in persistence in women (Falsetta et al. 2011).

    • At least 25 species; only Ng and Nm are human pathogens.

References

  1. Almogren A, Senior BW, Loomes LM, Kerr MA (2003) Structural and functional consequences of cleavage of human secretory and human serum immunoglobulin A1 by proteinases from Proteus mirabilis and Neisseria meningitidis. Infect Immun 71:3349–3356CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bernard SC, Simpson N, Join-Lambert O, Federici C, Laran-Chich MP, Maissa N, Bouzinba-Segard H, Morand PC, Chretien F, Taouji S, Chevet E, Janel S, Lafont F, Coureuil M, Segura A, Niedergang F, Marullo S, Couraud PO, Nassif X, Bourdoulous S (2014) Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat Med 20:725–731CrossRefPubMedGoogle Scholar
  3. Billker O, Popp A, Brinkmann V, Wenig G, Schneider J, Caron E, Meyer TF (2002) Distinct mechanisms of internalization of Neisseria gonorrhoeae by members of the CEACAM receptor family involving Rac1- and Cdc42-dependent and -independent pathways. EMBO J 21:560–571CrossRefPubMedPubMedCentralGoogle Scholar
  4. Casellato A, Rossi Paccani S, Barrile R, Bossi F, Ciucchi L, Codolo G, Pizza M, Arico B, de Bernard M (2014) The C2 fragment from Neisseria meningitidis antigen NHBA increases endothelial permeability by destabilizing adherens junctions. Cell Microbiol 16:925–937CrossRefPubMedGoogle Scholar
  5. Chung GT, Yoo JS, Oh HB, Lee YS, Cha SH, Kim SJ, Yoo CK (2008) Complete genome sequence of Neisseria gonorrhoeae NCCP11945. J Bacteriol 190:6035–6036CrossRefPubMedPubMedCentralGoogle Scholar
  6. Claus H, Vogel U, Swiderek H, Frosch M, Schoen C (2007) Microarray analyses of meningococcal genome composition and gene regulation: a review of the recent literature. FEMS Microbiol Rev 31:43–51CrossRefPubMedGoogle Scholar
  7. Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Aricò B, Capecchi B, Giuliani MM, Masignani V, Santini L, Savino S, Granoff DM, Caugant DA, Pizza M, Rappuoli R, Mora M (2002) NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 195:1445–1454CrossRefPubMedPubMedCentralGoogle Scholar
  8. Coureuil M, Mikaty G, Miller F, Lécuyer H, Bernard C, Bourdoulous S, Duménil G, Mège R-M, Weksler BB, Romero IA, Couraud P-O, Nassif X (2009) Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325:83–87CrossRefPubMedGoogle Scholar
  9. Del Tordello E, Vacca I, Ram S, Rappuoli R, Serruto D (2014) Neisseria meningitidis NalP cleaves human complement C3, facilitating degradation of C3b and survival in human serum. Proc Natl Acad Sci USA 111:427–432CrossRefPubMedGoogle Scholar
  10. Echenique-Rivera H, Muzzi A, Del Tordello E, Seib KL, Francois P, Rappuoli R, Pizza M, Serruto D (2011) Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. PLoS Pathog 7:e1002027CrossRefPubMedPubMedCentralGoogle Scholar
  11. Falsetta ML, Steichen CT, McEwan AG, Cho C, Ketterer M, Shao J, Hunt J, Jennings MP, Apicella MA (2011) The composition and metabolic phenotype of Neisseria gonorrhoeae biofilms. Front Microbiol 2:75CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D (2015) How the knowledge of interactions between meningococcus and the human immune system has been used to prepare effective Neisseria meningitidis vaccines. J Immunol Res 2015:189153CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hauck CR, Meyer TF (2003) ‘Small’ talk: Opa proteins as mediators of Neisseria–host-cell communication. Curr Opin Microbiol 6:43–49CrossRefPubMedGoogle Scholar
  14. Hey A, Li M-S, Hudson MJ, Langford PR, Kroll JS (2013) Transcriptional profiling of Neisseria meningitidis interacting with human epithelial cells in a long-term in vitro colonization model. Infect Immun 81:4149–4159CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hobbs MM, Anderson JE, Balthazar JT, Kandler JL, Carlson RW, Ganguly J, Begum AA, Duncan JA, Lin JT, Sparling PF, Jerse AE, Shafer WM (2013) Lipid A’s structure mediates Neisseria gonorrhoeae fitness during experimental infection of mice and men. MBio 4:e00892–e00813CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hung MC, Christodoulides M (2013) The biology of Neisseria adhesins. Biology 2:1054–1109CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hung MC, Heckels JE, Christodoulides M (2013) The adhesin complex protein (ACP) of Neisseria meningitidis is a new adhesin with vaccine potential. mBio 4(2). pii: e00041-13. doi: 10.1128/mBio.00041-13Google Scholar
  18. Jacob-Dubuisson F, Locht C, Antoine R (2001) Two-partner secretion in gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40:306–313CrossRefPubMedGoogle Scholar
  19. Jamet A, Rousseau C, Monfort JB, Frapy E, Nassif X, Martin P (2009) A two-component system is required for colonization of host cells by meningococcus. Microbiology 155:2288–2295CrossRefPubMedGoogle Scholar
  20. Jamet A, Jousset AB, Euphrasie D, Mukorako P, Boucharlat A, Ducousso A, Charbit A, Nassif X (2015) A new family of secreted toxins in pathogenic Neisseria species. PLoS Pathog 11:e1004592CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jarva H, Ram S, Vogel U, Blom AM, Meri S (2005) Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. J Immunol 174:6299–6307CrossRefPubMedGoogle Scholar
  22. Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder LA, Shafer WM (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71:5576–5582CrossRefPubMedPubMedCentralGoogle Scholar
  23. Khairalla AS, Omer SA, Mahdavi J, Aslam A, Dufailu OA, Self T, Jonsson AB, Georg M, Sjolinder H, Royer PJ, Martinez-Pomares L, Ghaemmaghami AM, Wooldridge KG, Oldfield NJ, Ala'Aldeen DA (2015) Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cell Microbiol 17:1008–1020CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lee EH, Shafer WM (1999) The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 33:839–845CrossRefPubMedGoogle Scholar
  25. Lee EH, Rouquette-Loughlin C, Folster JP, Shafer WM (2003) FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol 185:7145–7152CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lewis LA, Ram S (2014) Meningococcal disease and the complement system. Virulence 5:98–126CrossRefPubMedGoogle Scholar
  27. Lewis LA, Shafer WM, Ray TD, Ram S, Rice PA (2013) Phosphoethanolamine residues on the lipid A moiety of Neisseria gonorrhoeae lipooligosaccharide modulate binding of complement inhibitors and resistance to complement killing. Infect Immun 81:33–42CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liu Y, Zhang D, Engstrom A, Merenyi G, Hagner M, Yang H, Kuwae A, Wan Y, Sjolinder M, Sjolinder H (2016) Dynamic niche-specific adaptations in Neisseria meningitidis during infection. Microbes Infect 18:109–117CrossRefPubMedGoogle Scholar
  29. Loh E, Lavender H, Tan F, Tracy A, Tang CM (2016) Thermoregulation of meningococcal fHbp, an important virulence factor and vaccine antigen, is mediated by anti-ribosomal binding site sequences in the open reading frame. PLoS Pathog 12:e1005794CrossRefPubMedPubMedCentralGoogle Scholar
  30. Madico G, Welsch JA, Lewis LA, McNaughton A, Perlman DH, Costello CE, Ngampasutadol J, Vogel U, Granoff DM, Ram S (2006) The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J Immunol 177:501–510CrossRefPubMedPubMedCentralGoogle Scholar
  31. Massari P, Ram S, Macleod H, Wetzler LM (2003) The role of porins in neisserial pathogenesis and immunity. Trends Microbiol 11:87–93CrossRefPubMedGoogle Scholar
  32. Montanari P, Bozza G, Capecchi B, Caproni E, Barrile R, Norais N, Capitani M, Sallese M, Cecchini P, Ciucchi L, Gao Z, Rappuoli R, Pizza M, Arico B, Merola M (2012) Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion. Cell Microbiol 14:368–385CrossRefPubMedGoogle Scholar
  33. Newcombe J, Eales-Reynolds LJ, Wootton L, Gorringe AR, Funnell SGP, Taylor SC, McFadden JJ (2003) Infection with an avirulent phoP mutant of Neisseria meningitidis confers broad cross-reactive immunity. Infect Immun 72:338–344CrossRefGoogle Scholar
  34. Oldfield NJ, Bland SJ, Taraktsoglou M, Dos Ramos FJ, Robinson K, Wooldridge KG, Ala’Aldeen DA (2007) T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells. Cell Microbiol 9:463–478CrossRefPubMedGoogle Scholar
  35. Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR, Morelli G, Basham D, Brown D, Chillingworth T, Davies RM, Davis P, Devlin K, Feltwell T, Hamlin N, Holroyd S, Jagels K, Leather S, Moule S, Mungall K, Quail MA, Rajandream M-A, Rutherford KM, Simmonds M, Skelton J, Whitehead S, Spratt BG, Barrell BG (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404:502–506CrossRefPubMedGoogle Scholar
  36. Paruchuri DK, Seifert HS, Ajioka RS, Karlsson KA, So M (1990) Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin. Proc Natl Acad Sci USA 87:333–337CrossRefPubMedPubMedCentralGoogle Scholar
  37. Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I (2004) Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 68:154–171CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pizza M, Rappuoli R (2015) Neisseria meningitidis: pathogenesis and immunity. Curr Opin Microbiol 23:68–72CrossRefPubMedGoogle Scholar
  39. Pohlner J, Halter R, Beyreuther K, Meyer TF (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325:458–462CrossRefPubMedGoogle Scholar
  40. Sa ECC, Griffiths NJ, Virji M (2010) Neisseria meningitidis Opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells. PLoS Pathog 6:e1000911CrossRefGoogle Scholar
  41. Scarselli M, Serruto D, Montanari P, Capecchi B, Adu-Bobie J, Veggi D, Rappuoli R, Pizza M, Arico B (2006) Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Mol Microbiol 61:631–644CrossRefPubMedGoogle Scholar
  42. Schielke S, Frosch M, Kurzai O (2010) Virulence determinants involved in differential host niche adaptation of Neisseria meningitidis and Neisseria gonorrhoeae. Med Microbiol Immunol 199:185–196CrossRefPubMedGoogle Scholar
  43. Serruto D, Adu-Bobie J, Scarselli M, Veggi D, Pizza M, Rappuoli R, Aricò B (2003) Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. Mol Microbiol 48:323–334CrossRefPubMedGoogle Scholar
  44. Serruto D, Spadafina T, Ciucchi L, Lewis LA, Ram S, Tontini M, Santini L, Biolchi A, Seib KL, Giuliani MM, Donnelly JJ, Berti F, Savino S, Scarselli M, Costantino P, Kroll JS, O’Dwyer C, Qiu J, Plaut AG, Moxon R, Rappuoli R, Pizza M, Arico B (2010) Neisseria meningitidis GNA2132, a heparin-binding protein that induces protective immunity in humans. Proc Natl Acad Sci USA 107:3770–3775CrossRefPubMedPubMedCentralGoogle Scholar
  45. Simonis A, Schubert-Unkmeir A (2016) Interactions of meningococcal virulence factors with endothelial cells at the human blood-cerebrospinal fluid barrier and their role in pathogenicity. FEBS Lett 590:3854–3867CrossRefPubMedGoogle Scholar
  46. Simonis A, Hebling S, Gulbins E, Schneider-Schaulies S, Schubert-Unkmeir A (2014) Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells. PLoS Pathog 10:e1004160CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sjolinder H, Eriksson J, Maudsdotter L, Aro H, Jonsson AB (2008) Meningococcal outer membrane protein NhhA is essential for colonization and disease by preventing phagocytosis and complement attack. Infect Immun 76:5412–5420CrossRefPubMedPubMedCentralGoogle Scholar
  48. Thanassi DG, Bliska JB, Christie PJ (2012) Surface organelles assembled by secretion systems of gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 36:1046–1082CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tobiason DM, Seifert HS (2010) Genomic content of Neisseria species. J Bacteriol 192:2160–2168CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tong Y, Arking D, Ye S, Reinhold B, Reinhold V, Stein DC (2002) Neisseria gonorrhoeae strain PID2 simultaneously expresses six chemically related lipooligosaccharide structures. Glycobiology 12:523–533CrossRefPubMedGoogle Scholar
  51. Toussi DN, Wetzler LM, Liu X, Massari P (2016) Neisseriae internalization by epithelial cells is enhanced by TLR2 stimulation. Microbes Infect 18:627–638CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tsai CM (2001) Molecular mimicry of host structures by lipooligosaccharides of Neisseria meningitidis: characterization of sialylated and nonsialylated lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) structures in lipooligosaccharides using monoclonal antibodies and specific lectins. Adv Exp Med Biol 491:525–542CrossRefPubMedGoogle Scholar
  53. Turner DP, Marietou AG, Johnston L, Ho KK, Rogers AJ, Wooldridge KG, Ala'Aldeen DA (2006) Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. Infect Immun 74:2957–2964CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tzeng YL, Datta A, Ambrose K, Lo M, Davies JK, Carlson RW, Stephens DS, Kahler CM (2004) The MisR/MisS two-component regulatory system influences inner core structure and immunotype of lipooligosaccharide in Neisseria meningitidis. J Biol Chem 279:35053–35062CrossRefPubMedGoogle Scholar
  55. Valeri M, Zurli V, Ayala I, Colanzi A, Lapazio L, Corda D, Soriani M, Pizza M, Rossi Paccani S (2015) The Neisseria meningitidis ADP-ribosyltransferase NarE enters human epithelial cells and disrupts epithelial monolayer integrity. PLoS One 10:e0127614CrossRefPubMedPubMedCentralGoogle Scholar
  56. Virji M (2009) Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 7:274–286CrossRefPubMedGoogle Scholar
  57. Zughaier SM (2011) Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol 89:469–480CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations