Legionella spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Legionella pneumophila chromosome: 3,397,754 bp; 2,943 predicted ORFs (Chien et al. 2004)

  • Cell morphology:
    • Thin, rod-shaped cells; appear as coccobacilli in tissue (Fig. 20.1)

    • Atypical LPS:
      • Fifteen different O-chains

      • LipidA: more hydrophobic and less endotoxic than typical LPS

    • Pili: long type IV; PilE subunits

    • Flagellum: monopolar; associated with increased virulence

  • Gram stain:
    • Gram negative

  • Growth:
    • Aerobes: catalase positive, oxidase positive

    • Prefers high temperatures: 32–45 °C

    • Requires cysteine, iron, low sodium (Na):
      • Lacks cysteine biosynthetic genes

      • Sodium (Na) sensitivity:
        • Na-sensitive cells – virulent

        • Na-resistant cells – avirulent

    • Two growth phases:
      • Replicative (intracellular) phase: nonmotile, long filamentous rods

      • Active infective (transmissive) phase: motile, short rods; monopolar flagellum

    • Normal reservoir: primarily aquatic environments; protozoans (amoeba) living in lakes and ponds:
      • Endosymbiotic relationship with freshwater amoeba (e.g., Acanthamoeba castellanii).

      • Same genes needed to grow in amoeba and human macrophage.

      • Has access to DNA from a variety of bacterial, viral, and protozoan sources – “global mobilome” (Gomez-Valero and Buchrieser 2013).

      • Has the most eukaryotic-like genes of any prokaryote; acquired through horizon gene transfer (HGT).

    • Sources of contaminated H2O: biofilm formation on piping and other abiotic surfaces:
      • Premise plumbing: tap H2O in schools, hospitals, and public and private housing

      • Cooling towers (40–60% tested)

      • Air-conditioning systems

      • Humidifiers

      • Hot tubs, spas, showers

      • Misting equipment for vegetables

    • Excellent biofilm former: abiotic and biotic surfaces (lung epithelial cells)

    • Fifty eight species with three subspecies and ~60 serotypes

References

  1. Abu-Zant A, Jones S, Asare R, Suttles J, Price C, Graham J, Kwaik YA (2007) Anti-apoptotic signalling by the Dot/Icm secretion system of L. pneumophila. Cell Microbiol 9:246–264CrossRefPubMedGoogle Scholar
  2. Bandyopadhyay P, Byrne B, Chan Y, Swanson MS, Steinman HM (2003) Legionella pneumophila catalase-peroxidases are required for proper trafficking and growth in primary macrophages. Infect Immun 71:4526–4535CrossRefPubMedPubMedCentralGoogle Scholar
  3. Belyi Y, Tabakova I, Stahl M, Aktories K (2008) Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 190:3026–3035CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chien M, Morozova I, Shi S, Sheng H, Chen J, Gomez SM, Asamani G, Hill K, Nuara J, Feder M, Rineer J, Greenberg JJ, Steshenko V, Park SH, Zhao B, Teplitskaya E, Edwards JR, Pampou S, Georghiou A, Chou I-C, Iannuccilli W, Ulz ME, Kim DH, Geringer-Sameth A, Goldsberry C, Morozov P, Fischer SG, Segal G, Qu X, Rzhetsky A, Zhang P, Cayanis E, Jong PJD, Ju J, Kalachikov S, Shuman HA, Russo JJ (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968CrossRefPubMedGoogle Scholar
  5. Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR, Melia TJ, Roy CR (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–1076CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cianciotto NP (2007) Iron acquisition by Legionella pneumophila. Biometals 20:323–331CrossRefPubMedGoogle Scholar
  7. Cianciotto NP, Cornelis P, Baysse C (2005) Impact of the bacterial type I cytochrome c maturation system on different biological processes. Mol Microbiol 56:1408–1415CrossRefPubMedGoogle Scholar
  8. Cirillo SL, Bermudez LE, El-Etr SH, Duhamel GE, Cirillo JD (2001) Legionella pneumophila entry gene rtxA is involved in virulence. Infect Immun 69:508–517CrossRefPubMedPubMedCentralGoogle Scholar
  9. Creasey EA, Isberg RR (2012) The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc NatI Acad Sci USA 109:3481–3486CrossRefGoogle Scholar
  10. Cunha BA, Burillo A, Bouza E (2016) Legionnaires’ disease. Lancet 387:376–385CrossRefPubMedGoogle Scholar
  11. Feldheim YS, Zusman T, Speiser Y, Segal G (2016) The Legionella pneumophila CpxRA two-component regulatory system – new insights into CpxR’s function as a dual regulator and its connection to the effectors regulatory network. Mol Microbiol 99:1059–1079CrossRefPubMedGoogle Scholar
  12. Ge J, Shao F (2011) Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol 13:1870–1880CrossRefPubMedGoogle Scholar
  13. Gomez-Valero L, Buchrieser C (2013) Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication. Cold Spring Harb Perspect Med 3.:pii:a009993CrossRefPubMedPubMedCentralGoogle Scholar
  14. Heunera K, Steinert M (2003) The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int J Med Microbiol 293:133–143CrossRefGoogle Scholar
  15. Horenkamp FA, Kauffman KJ, Kohler LJ, Sherwood RK, Krueger KP, Shteyn V, Roy CR, Melia TJ, Reinisch KM (2015) The Legionella anti-autophagy effector RavZ targets the autophagosome via PI3P- and curvature-sensing motifs. Dev Cell 34:569–576CrossRefPubMedPubMedCentralGoogle Scholar
  16. Isaac DT, Isberg R (2014) Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol 9:343–359CrossRefPubMedPubMedCentralGoogle Scholar
  17. Isberg RR, O'Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24CrossRefPubMedGoogle Scholar
  18. Jo EK, Yuk JM, Shin DM, Sasakawa C (2013) Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 4:97CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kohler R, Fanghanel J, Konig B, Luneberg E, Frosch M, Rahfeld JU, Hilgenfeld R, Fischer G, Hacker J, Steinert M (2003) Biochemical and functional analyses of the Mip protein: influence of the N-terminal half and of peptidylprolyl isomerase activity on the virulence of Legionella pneumophila. Infect Immun 71:4389–4397CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lucchetti-Miganeh C, Burrowes E, Baysse C, Ermel G (2008) The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology 154:16–29CrossRefPubMedGoogle Scholar
  21. Molofsky AB, Swanson MS (2003) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50:445–461CrossRefPubMedGoogle Scholar
  22. Robey M, Cianciotto NP (2002) Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70:5659–5669CrossRefPubMedPubMedCentralGoogle Scholar
  23. Schunder E, Adam P, Higa F, Remer KA, Lorenz U, Bender J, Schulz T, Flieger A, Steinert M, Heuner K (2010) Phospholipase PlaB is a new virulence factor of Legionella pneumophila. Int J Med Microbiol 300:313–323CrossRefPubMedGoogle Scholar
  24. Shevchuk O, Jager J, Steinert M (2011) Virulence properties of the Legionella pneumophila cell envelope. Front Microbiol 2:74CrossRefPubMedPubMedCentralGoogle Scholar
  25. Stone BJ, Abu Kwaik Y (1998) Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 66:1768–1775PubMedPubMedCentralGoogle Scholar
  26. Vandersmissen L, Buck ED, Saels V, Coil DA, Anné J (2010) A Legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells. FEMS Microbiol Lett 306:168–176CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations