Bacillus spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Bacillus anthracis – chromosome, 5,227,293 bp; 5508 predicted ORFs (Read et al. 2003):
      • pOX1 plasmid: 181,677 bp; 217 predicted ORFs

      • pOX2 plasmid: 94,829 bp; 113 predicted ORFs

    • Bacillus cereus – chromosome: 5,426,909 bp; 5366 predicted ORFs (Ivanova et al. 2003)

  • Cell morphology:
    • Large, boxy rod-shaped cells; usually in single short chains or long chains (Fig. 1)

    • Endospore former; subterminal or central endospores that do not swell the cell

  • Gram stain:
    • Gram positive; older cells tend to stain Gram negative

  • Growth:
    • Obligate aerobes or facultative anaerobes; catalase positive.

    • Ubiquitous environmental pathogens found primarily in soil; also in water, dust, agricultural products, and invertebrates; primarily exist in endospore form.

    • Common laboratory contaminant.

    • Most species are highly motile (except Bacillus anthracis) with peritrichous flagella – involved in biofilm formation (B. cereus).

    • >300 species; most are rarely associated with human disease:
      • Two major human pathogens: B. anthracis and B. cereus

References

  1. Agaisse H, Gominet M, Okstad OA, Kolsto A-B, Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053CrossRefPubMedGoogle Scholar
  2. Cendrowski S, MacArthur W, Hanna P (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51:407–417CrossRefPubMedGoogle Scholar
  3. Dai Z, Sirard JC, Mock M, Koehler TM (1995) The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol 16:1171–1181CrossRefPubMedGoogle Scholar
  4. Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, Andersson M, Martlbauer E, Scherer S (2005) Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl Environ Microbiol 71:105–113CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ehling-Schulz M, Frenzel E, Gohar M (2015) Food-bacteria interplay: pathometabolism of emetic Bacillus cereus. Front Microbiol 6:704CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fouet A, Mock M (2006) Regulatory networks for virulence and persistence of Bacillus anthracis. Curr Opin Microbiol 9:160–166CrossRefPubMedGoogle Scholar
  7. Friebe S, van der Goot FG, Burgi J (2016) The ins and outs of anthrax toxin. Toxins 8, 69:1–15, doi:10.3390/toxins8030069
  8. Grenha R, Slamti L, Nicaise M, Refes Y, Lereclus D, Nessler S (2013) Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR. Proc NatI Acad Sci USA 110:1047–1052CrossRefGoogle Scholar
  9. Hotta K, Kim CY, Fox DT, Koppisch AT (2010) Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. Microbiology 156:1918–1925CrossRefPubMedGoogle Scholar
  10. Ivanova N, Sorokin A, Anderson I, Galleron N, Kapatral BCV, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D’Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91CrossRefPubMedGoogle Scholar
  11. Kern JW, Schneewind O (2008) BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol Microbiol 68:504–515CrossRefPubMedGoogle Scholar
  12. Kern J, Schneewind O (2010) BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol 75:324–332CrossRefPubMedGoogle Scholar
  13. Kolsto AB, Tourasse NJ, Okstad OA (2009) What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 63:451–476CrossRefPubMedGoogle Scholar
  14. Liu S, Moayeri M, Leppla SH (2014) Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol 22:317–325CrossRefPubMedPubMedCentralGoogle Scholar
  15. Majed R, Faille C, Kallassy M, Gohar M (2016) Bacillus cereus biofilms – same, only different. Front Microbiol 7:1054CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mikesell P, Ivins BE, Ristroph JD, Dreier TM (1983) Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun 39:371–376PubMedPubMedCentralGoogle Scholar
  17. Peraro MD, van der Goot FG (2016) Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 14:77–92CrossRefGoogle Scholar
  18. Pomerantsev AP, Kalnin KV, Osorio M, Leppla SH (2003) Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun 71:6591–6606CrossRefPubMedPubMedCentralGoogle Scholar
  19. Prince AS (2003) The host response to anthrax lethal toxin: unexpected observations. J Clin Investig 112:656–658CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ramarao N, Sanchis V (2013) The pore-forming haemolysins of Bacillus cereus: a review. Toxins 5:1119–1139CrossRefPubMedPubMedCentralGoogle Scholar
  21. Read TR, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Økstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, DeBoy RT, Madpu R, Daugherty SC, Durkin AS, Haft DH, Nelson WC, Peterson JD, Pop M, Khouri HM, Radune D, Benton JL, Mahamoud Y, Jiang L, Hance IR, Weidman JF, Berry KJ, Plaut RD, Wolf AM, Watkins KL, Nierman WC, Hazen A, Cline R, Redmond C, Thwaite JE, White O, Salzberg SL, Thomasonq B, Friedlander AM, Koehler TM, Hannaq PC, Kolstø A-B, Fraser CM (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86CrossRefPubMedGoogle Scholar
  22. Segond D, Abi Khalil E, Buisson C, Daou N, Kallassy M, Lereclus D, Arosio P, Bou-Abdallah F, Nielsen Le Roux C (2014) Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization. PLoS Pathog 10:e1003935CrossRefPubMedPubMedCentralGoogle Scholar
  23. Senesi S, Ghelardi E (2010) Production, secretion and biological activity of Bacillus cereus enterotoxins. Toxins 2:1690–1703CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shannon JG, Ross CL, Koehler TM, Rest RF (2003) Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun 71:3183–3189CrossRefPubMedPubMedCentralGoogle Scholar
  25. Tonry JH, McNichol BA, Ramarao N, Chertow DS, Kim KS, Stibitz S, Schneewind O, Kashanchi F, Bailey CL, Popov S, Chung MC (2012) Bacillus anthracis protease InhA regulates BslA-mediated adhesion in human endothelial cells. Cell Microbiol 14:1219–1230CrossRefPubMedGoogle Scholar
  26. Uchida I, Hornung JM, Thorne CB, Klimpel KR, Leppla SH (1993) Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J Bacteriol 175:5329–5338CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wilson MK, Abergel RJ, Arceneaux JE, Raymond KN, Byers BR (2010) Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin. Biometals 23:129–134CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations