Klebsiella spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Klebsiella pneumoniae strain MGH78578 chromosome: 5,315,120 bp; 4776 predicted ORFs (Lery et al. 2014)

  • Cell morphology:
    • Rod-shaped cells (Fig. 18.1)

    • Nonmotile

    • Capsule: major virulence factor (Fig. 18.1; see below)

    • Lipopolysaccharide (LPS): immunostimulatory; associated with inflammation and endotoxic shock; also functions in immune evasion (see below)

  • Gram stain:
    • Gram negative

  • Growth:
    • Facultative anaerobes; oxidase negative.

    • Urease positive; used to obtain nitrogen from host urea.

    • Reservoirs: contaminated soil and surface water; human hosts (primary).

    • Can colonize human mucosal layers, including the gastrointestinal tract and the nasopharynx.

    • Excellent biofilm formers (see below).

    • Six species and several subspecies: K. pneumoniae is the primary human pathogen; K. oxytoca is next most prevalent:
      • K. pneumoniae strains can be classified as either classical or hypervirulent (HV).

      • K. pneumoniae strains are serotyped by LPS (O) antigens and capsular (K) antigens:
        • 9 O antigen serotypes: O1 (most common)

        • 78 K antigen serotypes: K1–K78

      • Member of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) family of antibiotic-resistant nosocomial pathogens.

      • Significant increases worldwide in antibiotic-resistant strains and HV strains:
        • Antibiotic resistance – two major mechanisms:
          • Expression of carbapenemases; display resistance to all β-lactam antibiotics.

          • Isolates can be found worldwide.

          • Antibiotic resistance does not increase the virulence of these strains.

        • HV strains (Paczosa and Mecsas 2016; Patel et al. 2014; Shon et al. 2013):
          • Predominantly O1:K1 (93%) and O1:K2 strains.

          • Exhibit a hypermucoviscous phenotype on agar plates; due to the presence of a hypercapsule with increased production of capsule polysaccharide (CPS).

          • Also increased production and utilization of iron siderophores enterobactin, yersiniabactin, salmochelin, aerobactin.

          • Isolates are found predominantly in Southeast Asia and Taiwan, although incidents are spreading worldwide.

References

  1. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN (2012) Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. mBio 3: pii: e00224-11. doi: 10.1128/mBio.00224-11Google Scholar
  2. Chen JH, Siu LK, Fung CP, Lin JC, Yeh KM, Chen TL, Tsai YK, Chang FY (2010) Contribution of outer membrane protein K36 to antimicrobial resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother 65:986–990CrossRefPubMedGoogle Scholar
  3. Cortés G, Borrell N, Astorza B, Gómez C, Sauleda J, Albertı S (2002) Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun 70:2583–2590CrossRefPubMedPubMedCentralGoogle Scholar
  4. Darfeuille-Michaud A, Jallat C, Aubel D, Sirot D, Rich C, Sirot J, Joly B (1992) R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infect Immun 60:44–55PubMedPubMedCentralGoogle Scholar
  5. Di Martino P, Livrelli V, Sirot D, Joly B, Darfeuille-Michaud A (1996) A new fimbrial antigen harbored by CAZ-5/SHV-4-producing Klebsiella pneumoniae strains involved in nosocomial infections. Infect Immun 64:2266–2273PubMedPubMedCentralGoogle Scholar
  6. Hsieh PF, Lin TL, Lee CZ, Tsai SF, Wang JT (2008) Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 197:1717–1727CrossRefPubMedGoogle Scholar
  7. Hsu CR, Lin TL, Chen YC, Chou HC, Wang JT (2011) The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology 157:3446–3457CrossRefPubMedGoogle Scholar
  8. Hsueh K-L, Yu L-K, Chen Y-H, Cheng Y-H, Hsieh Y-C, Ke S-c, Hung K-W, Chen C-J, Huang T-h (2013) FeoC from Klebsiella pneumoniae contains a [4Fe-4S] cluster. J Bacteriol 195:4726–4734CrossRefPubMedPubMedCentralGoogle Scholar
  9. Lai Y-C, Peng H-L, Chang H-Y (2003) RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185:788–800CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lawlor MS, O’Connor C, Miller VL (2007) Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 75:1463–1472CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lery LMS, Frangeul L, Tomas A, Passet V, Almeida AS, Bialek-Davenet S, Barbe V, Bengoechea JA, Sansonetti P, Brisse S, Tournebize R (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol 12:41–56CrossRefPubMedPubMedCentralGoogle Scholar
  12. Li B, Zhao Y, Liu C, Chen Z, Zhou D (2014) Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 9:1071–1081CrossRefPubMedGoogle Scholar
  13. Llobet E, March C, Gimenez P, Bengoechea JA (2009) Klebsiella pneumoniae OmpA confers resistance to antimicrobial peptides. Antimicrob Agents Chemother 53:298–302CrossRefPubMedGoogle Scholar
  14. Llobet E, Martinez-Moliner V, Moranta D, Dahlstrom KM, Regueiro V, Tomas A, Cano V, Perez-Gutierrez C, Frank CG, Fernandez-Carrasco H, Insua JL, Salminen TA, Garmendia J, Bengoechea JA (2015) Deciphering tissue-induced Klebsiella pneumoniae lipid A structure. Proc Natl Acad Sci USA 112:E6369–E6378CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ma L-C, Fang C-T, Lee C-Z, Shun C-T, Wang J-T (2005) Genomic heterogeneity in Klebsiella pneumoniae strains Is associated with primary pyogenic liver abscess and metastatic infection. J Infect Dis 192:117–128CrossRefPubMedGoogle Scholar
  16. March C, Moranta D, Regueiro V, Llobet E, Tomas A, Garmendia J, Bengoechea JA (2011) Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells. J Biol Chem 286:9956–9967CrossRefPubMedPubMedCentralGoogle Scholar
  17. Muller SI, Valdebenito M, Hantke K (2009) Salmochelin, the long-overlooked catecholate siderophore of Salmonella. Biometals 22:691–695CrossRefPubMedGoogle Scholar
  18. Murphy CN, Clegg S (2012) Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 7:991–1002CrossRefPubMedGoogle Scholar
  19. Nassif X, Sansonetti PJ (1986) Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun 54:603–608PubMedPubMedCentralGoogle Scholar
  20. Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 80:629–661CrossRefPubMedPubMedCentralGoogle Scholar
  21. Patel PK, Russo TA, Karchmer AW (2014) Hypervirulent Klebsiella pneumoniae. Open Forum Infect Dis 1:ofu028CrossRefPubMedPubMedCentralGoogle Scholar
  22. Shin SY, Bae IK, Kim J, Jeong SH, Yong D, Kim JM, Lee K (2012) Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J Med Microbiol 61:239–245CrossRefPubMedGoogle Scholar
  23. Shon AS, Bajwa RP, Russo TA (2013) Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4:107–118CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF (2009) Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology 155:4170–4183CrossRefPubMedGoogle Scholar
  25. Stout V, Torres-Cabassa A, Maurizi MR, Gutnick D, Gottesman S (1991) RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 173:1738–1747CrossRefPubMedPubMedCentralGoogle Scholar
  26. Struve C, Bojer M, Krogfelt KA (2008) Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 76:4055–4065CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tarkkanen AM, Allen BL, Williams PH, Kauppi M, Haahtela K, Siitonen A, Orskov I, Orskov F, Clegg S, Korhonen TK (1992) Fimbriation, capsulation, and iron-scavenging systems of Klebsiella strains associated with human urinary tract infection. Infect Immun 60:1187–1192PubMedPubMedCentralGoogle Scholar
  28. Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE (2014) Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3:743–758CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wu CC, Huang YJ, Fung CP, Peng HL (2010) Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology 156:1983–1992CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations