Helicobacter spp.

  • Douglas I. Johnson


  • Genomics:
    • Helicobacter pylori chromosome: 1,667,867 bp; 1,590 predicted ORFs (Tomb et al. 1997)

  • Cell morphology:
    • Small, helical or curved, rod-shaped cells (Fig. 18.1)

    • Flagella: four to six lophotrichous flagella
      • Motility is essential for virulence (see below).

      • Two copolymerized flagellin proteins: FlaA and FlaB.

    • LPS: has fucose-containing O-antigens
      • Mimics Lewis b-like blood group antigens

      • Plays a role in cell adherence (see below)

      • Can undergo phase variation to elude immune system (Salaun et al. 2004)

  • Gram stain:
    • Gram negative

  • Growth:
    • Microaerophilic; oxidase positive, catalase positive, urease positive (see below)

    • Normal reservoir: stomach and upper gastrointestinal tract

    • Biofilm formation: can form on abiotic surfaces and on gastric epithelial cells; under the regulation of the ArsR–ArsS TCS (Servetas et al. 2016; Stark et al. 1999)

    • ~23 species – classified as either gastric species or enterohepatic species:
      • Helicobacter pylori is the primary human pathogen.

      • Highly heterogeneous bacteria; probably due to coevolution with humans, its only ecological niche, and horizontal gene transfer events.


  1. Abadi ATB, Perez-Perez G (2016) Role of dupA in virulence of Helicobacter pylori. World J Gastroenterol 22:10118–10123CrossRefGoogle Scholar
  2. Alm RA, Bina J, Andrews BM, Doig P, Hancock REW, Trust TJ (2000) Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun 68:4155–4168CrossRefPubMedPubMedCentralGoogle Scholar
  3. Backert S, Blaser MJ (2016) The role of CagA in the gastric biology of Helicobacter pylori. Cancer Res 76:4028–4031CrossRefPubMedGoogle Scholar
  4. Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH (2013) A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 21:1931–1941CrossRefPubMedGoogle Scholar
  5. Basso D, Plebani M, Kusters JG (2010) Pathogenesis of Helicobacter pylori infection. Helicobacter 15(Suppl 1):14–20CrossRefPubMedGoogle Scholar
  6. Bergé C, Terradot L (2017) Structural insights into Helicobacter pylori Cag protein interactions with host cell factors. Curr Top Microbiol Immunol 400:129–147PubMedGoogle Scholar
  7. Bergman M, Del Prete G, van Kooyk Y, Appelmelk B (2006) Helicobacter pylori phase variation, immune modulation and gastric autoimmunity. Nat Rev Microbiol 4:151–159CrossRefPubMedGoogle Scholar
  8. Cherrier MV, Cavazza C, Bochot C, Lemaire D, Fontecilla-Camps JC (2008) Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA. Biochemist 47:9937–9943CrossRefGoogle Scholar
  9. Cover TL, Blanke SR (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 3:320–332CrossRefPubMedGoogle Scholar
  10. da Costa DM, Pereira Edos S, Rabenhorst SH (2015) What exists beyond cagA and vacA? Helicobacter pylori genes in gastric diseases. World J Gastroenterol 21:10563–10572CrossRefPubMedPubMedCentralGoogle Scholar
  11. Danielli A, Amore G, Scarlato V (2010) Built shallow to maintain homeostasis and persistent infection: insight into the transcriptional regulatory network of the gastric human pathogen Helicobacter pylori. PLoS Pathog 6:e1000938CrossRefPubMedPubMedCentralGoogle Scholar
  12. de Bernard M, Josenhans C (2014) Pathogenesis of Helicobacter pylori infection. Helicobacter 19(Suppl 1):11–18CrossRefPubMedGoogle Scholar
  13. Dosanjh NS, Michel SL (2006) Microbial nickel metalloregulation: NikRs for nickel ions. Curr Opin Chem Biol 10:123–130CrossRefPubMedGoogle Scholar
  14. Fischer F, Robbe-Saule M, Turlin E, Mancuso F, Michel V, Richaud P, Veyrier FJ, De Reuse H, Vinella D (2016) Characterization in Helicobacter pylori of a nickel transporter essential for colonization that was acquired during evolution by gastric Helicobacter species. PLoS Pathog 12:e1006018CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fischer W, Püls J, Buhrdorf R, Gebert B, Odenbreit S, Haas R (2001) Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42:1337–1348CrossRefPubMedGoogle Scholar
  16. Galmiche A, Rassow J, Doye A, Cagnol S, Chambard JC, Contamin S, de Thillot V, Just I, Ricci V, Solcia E, Van Obberghen E, Boquet P (2000) The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J 19:6361–6370CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R (2003) Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301:1099–1102CrossRefPubMedGoogle Scholar
  18. Gilbreath JJ, Pich OQ, Benoit SL, Besold AN, Cha JH, Maier RJ, Michel SL, Maynard EL, Merrell DS (2013) Random and site-specific mutagenesis of the Helicobacter pylori ferric uptake regulator provides insight into Fur structure-function relationships. Mol Microbiol 89:304–323CrossRefPubMedPubMedCentralGoogle Scholar
  19. Glocker E, Lange C, Covacci A, Bereswill S, Kist M, Pahl HL (1998) Proteins encoded by the cag pathogenicity island of Helicobacter pylori are required for NF-kappaB activation. Infect Immun 66:2346–2348PubMedPubMedCentralGoogle Scholar
  20. Gong M, Ling SS, Lui SY, Yeoh KG, Ho B (2010) Helicobacter pylori gamma-glutamyl transpeptidase is a pathogenic factor in the development of peptic ulcer disease. Gastroenterology 139:564–573CrossRefPubMedGoogle Scholar
  21. Goodwin AC, Weinberger DM, Ford CB, Nelson JC, Snider JD, Hall JD, Paules CI, Peek RM Jr, Forsyth MH (2008) Expression of the Helicobacter pylori adhesin SabA is controlled via phase variation and the ArsRS signal transduction system. Microbiology 154:2231–2240CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gupta VR, Patel HK, Kostolansky SS, Ballivian RA, Eichberg J, Blanke SR (2008) Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog 4:e1000073CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haley KP, Gaddy JA (2015) Metalloregulation of Helicobacter pylori physiology and pathogenesis. Front Microbiol 6:911CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hoy B, Lower M, Weydig C, Carra G, Tegtmeyer N, Geppert T, Schroder P, Sewald N, Backert S, Schneider G, Wessler S (2010) Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11:798–804CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huang JY, Goers Sweeney E, Guillemin K, Amieva MR (2017) Multiple acid sensors control Helicobacter pylori colonization of the stomach. PLoS Pathog 13:e1006118CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hussein NR, Argent RH, Marx CK, Patel SR, Robinson K, Atherton JC (2010) Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells. J Infect Dis 202:261–269CrossRefPubMedGoogle Scholar
  27. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Borén T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377CrossRefPubMedGoogle Scholar
  28. Javadi MB, Katzenmeier G (2016) The forgotten virulence factor: the ‘non-conventional’ hemolysin Tlya and its role in Helicobacter pylori infection. Curr Microbiol 73:930–937CrossRefPubMedGoogle Scholar
  29. Junaid M, Linn AK, Javadi MB, Al-Gubare S, Ali N, Katzenmeier G (2016) Vacuolating cytotoxin A (VacA) – a multi-talented pore-forming toxin from Helicobacter pylori. Toxicon 118:27–35CrossRefPubMedGoogle Scholar
  30. Kalali B, Mejias-Luque R, Javaheri A, Gerhard M (2014) H. pylori virulence factors: influence on immune system and pathology. Mediat Inflamm 2014:426309CrossRefGoogle Scholar
  31. Kao CY, Sheu BS, Wu JJ (2016) Helicobacter pylori infection: an overview of bacterial virulence factors and pathogenesis. Biom J 39:14–23Google Scholar
  32. Kudo T, Nurgalieva ZZ, Conner ME, Crawford S, Odenbreit S, Haas R, Graham DY, Yamaoka Y (2004) Correlation between Helicobacter pylori OipA protein expression and oipA gene switch status. J Clin Microbiol 42:2279–2281CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kutter S, Buhrdorf R, Haas J, Schneider-Brachert W, Haas R, Fischer W (2008) Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 190:2161–2171CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kwon YYDH, Graham DY (2000) A Mr 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc NatI Acad Sci U S A 97:7533–7538CrossRefGoogle Scholar
  35. Leunk RD, Johnson PT, David BC, Kraft WG, Morgan DR (1988) Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol 26:93–99CrossRefPubMedGoogle Scholar
  36. Lu H, Hsu PI, Graham DY, Yamaoka Y (2005) Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology 128:833–848CrossRefPubMedPubMedCentralGoogle Scholar
  37. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315CrossRefPubMedGoogle Scholar
  38. Mejías-Luque R, Gerhard M (2017) Immune evasion strategies and persistence of Helicobacter pylori. Curr Top Microbiol Immunol 400:53–71PubMedGoogle Scholar
  39. Mobley HLT, Cortesia MJ, Rosenthal LE, Jones BD (1988) Characterization of urease from Campylobacter pylori. J Clin Microbiol 26:831–836PubMedPubMedCentralGoogle Scholar
  40. Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480PubMedPubMedCentralGoogle Scholar
  41. Montecucco C, de Bernard M (2003) Molecular and cellular mechanisms of action of the vacuolating cytotoxin (VacA) and neutrophil-activating protein (HP-NAP) virulence factors of Helicobacter pylori. Microbes Infect 5:715–721CrossRefPubMedGoogle Scholar
  42. Moran AP, Prendergast MM (2001) Molecular mimicry in Campylobacter jejuni and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. J Autoimmun 16:241–256CrossRefPubMedGoogle Scholar
  43. Nakayama M, Kimura M, Wada A, Yahiro K, Ogushi K, Niidome T, Fujikawa A, Shirasaka D, Aoyama N, Kurazono H, Noda M, Moss J, Hirayama T (2004) Helicobacter pylori VacA activates the p38/activating transcription factor 2-mediated signal pathway in AZ-521 cells. J Biol Chem 279:7024–7028CrossRefPubMedGoogle Scholar
  44. Niehus E, Gressmann H, Ye F, Schlapbach R, Dehio M, Dehio C, Stack A, Meyer TF, Suerbaum S, Josenhans C (2004) Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Mol Microbiol 52:947–961CrossRefPubMedGoogle Scholar
  45. Ottemann KM (2002) Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect Immun 70:1984–1990CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pang SS, Nguyen ST, Perry AJ, Day CJ, Panjikar S, Tiralongo J, Whisstock JC, Kwok T (2014) The three-dimensional structure of the extracellular adhesion domain of the sialic acid-binding adhesin SabA from Helicobacter pylori. J Biol Chem 289:6332–6340CrossRefPubMedGoogle Scholar
  47. Papini E, Satin B, Norais N, Bernard MD, Telford JL, Rappuoli R, Montecucco C (1998) Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J Clin Invest 102:813–820CrossRefPubMedPubMedCentralGoogle Scholar
  48. Peck B, Ortkamp M, Diehl KD, Hundt E, Knapp B (1999) Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res 27:3325–3333CrossRefPubMedPubMedCentralGoogle Scholar
  49. Salaun L, Linz B, Suerbaum S, Saunders NJ (2004) The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori. Microbiology 150:817–830CrossRefPubMedGoogle Scholar
  50. Servetas SL, Carpenter BM, Haley KP, Gilbreath JJ, Gaddy JA, Merrell DS (2016) Characterization of key Helicobacter pylori regulators identifies a role for ArsRS in biofilm formation. J Bacteriol 198:2536–2548CrossRefPubMedPubMedCentralGoogle Scholar
  51. Stark RM, Gerwig GJ, Pitman RS, Potts LF, Williams NA, Greenman J, Weinzweig IP, Hirst TR, Millar MR (1999) Biofilm formation by Helicobacter pylori. Lett Appl Microbiol 28:121–126CrossRefPubMedGoogle Scholar
  52. Su YL, Huang HL, Huang BS, Chen PC, Chen CS, Wang HL, Lin PH, Chieh MS, Wu JJ, Yang JC, Chow LP (2016) Combination of OipA, BabA, and SabA as candidate biomarkers for predicting Helicobacter pylori-related gastric cancer. Sci Rep 6:36442CrossRefPubMedPubMedCentralGoogle Scholar
  53. Szabò I, Brutsche S, Tombola F, Moschioni M, Satin B, Telford JL, Rappuoli R, Montecucco C, Papini E, Zoratti M (1999) Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J 18:5517–5527CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tomb J-F, White O, KerlavageR AR, Clayton EA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karpk PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547CrossRefPubMedGoogle Scholar
  55. Varga MG, Peek RM (2017) DNA transfer and toll-like receptor modulation by Helicobacter pylori. Curr Top Microbiol Immunol 400:169–193PubMedPubMedCentralGoogle Scholar
  56. Waidner B, Melchers K, Stahler FN, Kist M, Bereswill S (2005) The Helicobacter pylori CrdRS two-component regulation system (HP1364/HP1365) is required for copper-mediated induction of the copper resistance determinant CrdA. J Bacteriol 187:4683–4688CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yamaoka Y (2010) Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol 7:629–641PubMedPubMedCentralGoogle Scholar
  58. Yonezawa H, Osaki T, Fukutomi T, Hanawa T, Kurata S, Zaman C, Hojo F, Kamiya S (2017) Diversification of the AlpB outer membrane protein of Helicobacter pylori affects biofilm formation and cellular adhesion. J Bacteriol 199:e00729–e00716CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhao H, Ji X, Chen X, Li J, Zhang Y, Du Z, Zhang Y, Li B (2017) Functional study of gene hp0169 in Helicobacter pylori pathogenesis. Microbiol Path 104:225–231CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations