Advertisement

Haemophilus spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Haemophilus influenzae chromosome: 1,830,140 bp; 736 predicted ORFs (Fleischmann et al. 1995)

  • Cell morphology:
    • Very small pleomorphic coccobacilli (Fig. 17.1)

  • Gram stain:
    • Gram negative

  • Growth:
    • Aerotolerant anaerobes; catalase positive, oxidase positive:
      • In vitro growth requires CO2-enriched environment

    • Very fastidious growth.

    • H. influenzae requires X factor and V factor:
      • X factor: hemin; contains Fe3+ ion; released from lysed red blood cells (chocolate agar)

      • V factor: nicotinamide adenine dinucleotide (NAD)

    • Temperature sensitive:
      • Stocks must be stored at 37 °C for survival.

    • Human commensal that colonizes mucous membranes of the upper respiratory tract, nasopharynx, mouth, vagina, and intestinal tract; opportunistic pathogen.

    • Eighteen species: one major human pathogenic species (H. influenzae) and several minor pathogenic species:
      • Haemophilus influenzae subtype aegyptius: acute, purulent conjunctivitis, Brazilian purpuric fever

      • Haemophilus parainfluenzae: opportunistic pathogen of chronic obstructive pulmonary disease (COPD) patients

      • Haemophilus ducreyi: causes inflammatory chancroid; sexually transmitted disease (Lewis and Mitjà 2016); contains a CDT DNAase that damages chromosomal DNA and causes a cell cycle arrest (Fais et al. 2016)

    • H. influenzae strains are characterized (typed) by the presence or absence of polyribosylribitolphosphate (PRP) capsule (Fig. 17.2).
      • Encapsulated strains – typeable strains:
        • Serotypes a–f: based on antibodies against PRP capsule antigens

        • Serotype b (Hib): most common; caused serious systemic infections (meningitis) before Hib vaccine

        • PRP capsule antigens: primary antigenic constituent in polysaccharide and polysaccharide conjugate Hib vaccines

      • Nonencapsulated strains – non-typeable H. influenza (NTHi):
        • Normal serum is usually bacteriocidal for most NTHi strains but not encapsulated strains

        • Great heterogeneity between NTHi strains

References

  1. De Schutter I, De Wachter E, Crokaert F, Verhaegen J, Soetens O, Pierard D, Malfroot A (2011) Microbiology of bronchoalveolar lavage fluid in children with acute nonresponding or recurrent community-acquired pneumonia: identification of nontypeable Haemophilus influenzae as a major pathogen. Clin Infect Dis 52:1437–1444CrossRefPubMedGoogle Scholar
  2. Duell BL, Su YC, Riesbeck K (2016) Host-pathogen interactions of nontypeable Haemophilus influenzae: from commensal to pathogen. FEBS Lett 590:3840–3853CrossRefPubMedGoogle Scholar
  3. Fais T, Delmas J, Serres A, Bonnet R, Dalmasso G (2016) Impact of CDT toxin on human diseases. Toxins 8:220CrossRefPubMedCentralGoogle Scholar
  4. Fink DL, Green BA, St. Geme Iii JW (2002) The Haemophilus influenzae hap autotransporter binds to fibronectin, laminin, and collagen IV. Infect Immun 70:4902–4907CrossRefPubMedPubMedCentralGoogle Scholar
  5. Finney LJ, Ritchie A, Pollard E, Johnston SL, Mallia P (2014) Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis 9:1119–1132PubMedPubMedCentralGoogle Scholar
  6. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenny K, Sutton G, FitzHugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu L-I, Glodek A, Kelley JM, Weidman JF, Philips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae. Science 269:496–512CrossRefPubMedGoogle Scholar
  7. Gilsdorf JR, Marrs CF, Foxman B (2004) Haemophilus influenzae: genetic variability and natural selection to identify virulence factors. Infect Immun 72:2457–2461CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gray-Owen SD, Schryvers AB (1995) Characterization of transferrin binding proteins 1 and 2 in invasive type b and nontypeable strains of Haemophilus influenzae. Infect Immun 63:3809–3815PubMedPubMedCentralGoogle Scholar
  9. Hallstrom T, Riesbeck K (2010) Haemophilus influenzae and the complement system. Trends Microbiol 18:258–265CrossRefPubMedGoogle Scholar
  10. Hariadi NI, Zhang L, Patel M, Sandstedt SA, Davis GS, Marrs CF, Gilsdorf JR (2015) Comparative profile of heme acquisition genes in disease-causing and colonizing nontypeable Haemophilus influenzae and Haemophilus haemolyticus. J Clin Microbiol 53:2132–2137CrossRefPubMedPubMedCentralGoogle Scholar
  11. King P (2012) Haemophilus influenzae and the lung (Haemophilus and the lung). Clin Transl Med 1:10CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kroll JS, Moxon ER (1988) Capsulation and gene copy number at the cap locus of Haemophilus influenzae type b. J Bacteriol 170:859–864CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kroll JS, Loynds BM, Moxon ER (1991) The Haemophilus influenzae capsulation gene cluster: a compound transposon. Mol Microbiol 5:1549–1560CrossRefPubMedGoogle Scholar
  14. Kubiet M, Ramphal R, Weber A, Smith A (2000) Pilus-mediated adherence of Haemophilus influenzae to human respiratory mucins. Infect Immun 68:3362–3367CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lewis DA, Mitjà O (2016) Haemophilus ducreyi: from sexually transmitted infection to skin ulcer pathogen. Curr Opin Infect Dis 29:52–57CrossRefPubMedGoogle Scholar
  16. Maciver I, Latimer JL, Liem HH, Muller-Eberhard U, Hrkal Z, Hansen EJ (1996) Identification of an outer membrane protein involved in utilization of hemoglobin-haptoglobin complexes by nontypeable Haemophilus influenzae. Infect Immun 64:3703–3712PubMedPubMedCentralGoogle Scholar
  17. Morton DJ, Whitby PW, Jin H, Ren Z, Stull TL (1999) Effect of multiple mutations in the hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA, HgpB, and HgpC, of Haemophilus influenzae type b. Infect Immun 67:2729–2739PubMedPubMedCentralGoogle Scholar
  18. Mulks MH, Kornfeld SJ, Frangione B, Plaut AG (1982) Relationship between the specificity of IgA proteases and serotypes in Haemophilus influenzae. J Infect Dis 146:266–274CrossRefPubMedGoogle Scholar
  19. Noel GJ, Brittingham A, Granato AA, Mosser DM (1996) Effect of amplification of the Cap b locus on complement-mediated bacteriolysis and opsonization of type b Haemophilus influenzae. Infect Immun 64:4769–4775PubMedPubMedCentralGoogle Scholar
  20. Pidcock KA, Wooten JA, Daley BA, Stull TL (1988) Iron acquisition by Haemophilus influenzae. Infect Immun 56:721–725PubMedPubMedCentralGoogle Scholar
  21. Sanders JD, Cope LD, Hansen EJ (1994) Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect Immun 62:4515–4525PubMedPubMedCentralGoogle Scholar
  22. St. Geme JWR, Cutter D (2000) The Haemophilus influenzae Hia adhesin is an autotransporter protein that remains uncleaved at the C terminus and fully cell associated. J Bacteriol 182:6005–6013CrossRefPubMedPubMedCentralGoogle Scholar
  23. St. Geme JW 3rd, Yeo HJ (2009) A prototype two-partner secretion pathway: the Haemophilus influenzae HMW1 and HMW2 adhesin systems. Trends Microbiol 17:355–360CrossRefPubMedGoogle Scholar
  24. Wong SM, Akerley BJ (2012) Genome-scale approaches to identify genes essential for Haemophilus influenzae pathogenesis. Front Cell Infect Microbiol 2:23CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations