Advertisement

Francisella spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Francisella tularensis chromosome: 1,892,819 bp; 1804 predicted ORFs (Larsson et al. 2005)

  • Cell morphology:
    • Small pleomorphic coccobacilli (Fig. 16.1)

  • Gram stain:
    • Gram negative

  • Growth:
    • Strict aerobes; oxidase negative

    • Fastidious growth: requires cysteine and iron

    • Found in many mammalian species, including rabbits, voles, mice, squirrels, muskrats, and beavers; macrophage are the usual host cell reservoir

    • Ten species with multiple subspecies: two major human pathogenic subspecies and several minor pathogenic species:
      • F. tularensis subsp. tularensis – Type A Francisella:
        • Highly virulent; associated with dry terrestrial reservoirs primarily in North America

      • F. tularensis subsp. holarctica – Type B Francisella:
        • Milder disease state; associated with aquatic reservoirs primarily in Europe and Asia

References

  1. Apicella MA, Post DM, Fowler AC, Jones BD, Rasmussen JA, Hunt JR, Imagawa S, Choudhury B, Inzana TJ, Maier TM, Frank DW, Zahrt TC, Chaloner K, Jennings MP, McLendon MK, Gibson BW (2010) Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One 5:e11060CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barel M, Hovanessian AG, Meibom K, Briand JP, Dupuis M, Charbit A (2008) A novel receptor – ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol 8:145CrossRefPubMedPubMedCentralGoogle Scholar
  3. Dai S, Mohapatra NP, Schlesinger LS, Gunn JS (2010) Regulation of Francisella tularensis virulence. Front Microbiol 1:144PubMedGoogle Scholar
  4. Fortier AH, Leiby DA, Narayanan RB, Asafoadjei E, Crawford RM, Nacy CA, Meltzer MS (1995) Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect Immun 63:1478–1483PubMedPubMedCentralGoogle Scholar
  5. Geier H, Celli J (2011) Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect Immun 79:2204–2214CrossRefPubMedPubMedCentralGoogle Scholar
  6. Hajjar AM, Harvey MD, Shaffer SA, Goodlett DR, Sjostedt A, Edebro H, Forsman M, Bystrom M, Pelletier M, Wilson CB, Miller SI, Skerrett SJ, Ernst RK (2006) Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by toll-like receptors. Infect Immun 74:6730–6738CrossRefPubMedPubMedCentralGoogle Scholar
  7. Jones BD, Faron M, Rasmussen JA, Fletcher JR (2014) Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 4:32CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jones CL, Napier BA, Sampson TR, Llewellyn AC, Schroeder MR, Weiss DS (2012) Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 76:383–404CrossRefPubMedPubMedCentralGoogle Scholar
  9. Larsson P, Oyston PC, Chain P, Chu MC, Duffield M, Fuxelius HH, Garcia E, Halltorp G, Johansson D, Isherwood KE, Karp PD, Larsson E, Liu Y, Michell S, Prior J, Prior R, Malfatti S, Sjostedt A, Svensson K, Thompson N, Vergez L, Wagg JK, Wren BW, Lindler LE, Andersson SG, Forsman M, Titball RW (2005) The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37:153–159CrossRefPubMedGoogle Scholar
  10. Lindgren H, Lindgren L, Golovliov I, Sjostedt A (2015) Mechanisms of heme utilization by Francisella tularensis. PLoS One 10:e0119143CrossRefPubMedPubMedCentralGoogle Scholar
  11. McLendon MK, Apicella MA, Allen L-AH (2006) Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol 60:167–185CrossRefPubMedPubMedCentralGoogle Scholar
  12. Melillo A, Sledjeski DD, Lipski S, Wooten RM, Basrur V, Lafontaine ER (2006) Identification of a Francisella tularensis LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol Lett 263:102–108CrossRefPubMedGoogle Scholar
  13. Moreau GB, Mann BJ (2013) Adherence and uptake of Francisella into host cells. Virulence 4:826–832CrossRefPubMedPubMedCentralGoogle Scholar
  14. Perez NM, Ramakrishnan G (2014) The reduced genome of the Francisella tularensis live vaccine strain (LVS) encodes two iron acquisition systems essential for optimal growth and virulence. PLoS One 9:e93558CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ramakrishnan G, Meeker A, Dragulev B (2008) fslE is necessary for siderophore-mediated iron acquisition in Francisella tularensis Schu S4. J Bacteriol 190:5353–5361CrossRefPubMedPubMedCentralGoogle Scholar
  16. Salomonsson EN, Forslund AL, Forsberg A (2011) Type IV pili in Francisella – a virulence trait in an intracellular pathogen. Front Microbiol 2:29CrossRefPubMedPubMedCentralGoogle Scholar
  17. Steiner DJ, Furuya Y, Metzger DW (2014) Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 7:239–251PubMedPubMedCentralGoogle Scholar
  18. Sullivan JT, Jeffery EF, Shannon JD, Ramakrishnan G (2006) Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J Bacteriol 188:3785–3795CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations