Advertisement

Escherichia spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Detailed phylogeny is based on the sequence analysis of more than 180 Escherichia coli genomes (Kaas et al. 2012):
      • Core genome: 3,051 homology gene clusters (HGCs) present in 95% of all genomes; 1,702 HGCs in 100% of all genomes.

      • Pan genome: 16,373 HGCs.

      • Pathogen genomes can contain up to 1 Mb more DNA than commensal isolates; extra DNA is associated with the gain of virulence factors through horizontal gene transfer (HGT) mechanisms and the loss of virulence factors through mutational pathoadaptivity (Croxen et al. 2013).

    • Escherichia coli K-12 strain MG1655 chromosome: 4,639,221 bp; 4,288 predicted ORFs (Blattner et al. 1997).

    • Escherichia coli O157:H7 strain EDL933 chromosome: 5,547,323 bp; 5,498 predicted ORFs (Perna et al. 2001).

    • Escherichia coli O104:H4 stx2-positive strain 2011C-3493 chromosome: 5,273,097 bp; 4,963 predicted ORFs (Ahmed et al. 2012).

  • Cell morphology:
    • Rod-shaped cells (Fig. 15.1)

    • Can be motile or nonmotile:
      • Peritrichous flagella (H antigens); more than 50 H variants (Zhou et al. 2015).

      • Flagellar motility plays an important role in certain pathotypes (UPEC); also important for biofilm formation.

  • Gram stain:
    • Gram negative

  • Growth:
    • Facultative anaerobes; oxidase negative.

    • Reservoirs:
      • Part of the normal microbiota of the gastrointestinal tracts of humans and other warm-blooded animals

      • Fecal-contaminated food and water

    • Excellent biofilm formers (see below).

    • Eight species; E. coli is the major human pathogen.

    • E. coli pathotype classification: based on disease states and virulence genes:
      • Diarrheagenic pathotypes:
        • AIEC: adherent invasive E. coli

        • DAEC: diffusely adherent E. coli

        • EAEC: enteroaggregative E. coli

        • EHEC: enterohemorrhagic E. coli; subset of Shiga toxin-producing E. coli (STEC)

        • EIEC: enteroinvasive E. coli; phylogenetically almost identical to Shigella spp.; uses same virulence mechanisms although EIEC shows reduced virulence and expression of virulence factors; discussed in more detail in Chap.  28 Shigella spp.

        • EPEC: enteropathogenic E. coli

        • ETEC: enterotoxigenic E. coli

      • Extraintestinal pathotypes; extraintestinal pathogenic E. coli (ExPEC):
        • UPEC: uropathogenic E. coli

        • NMEC: neonatal meningitis E. coli

References

  1. Ahmed SA, Awosika J, Baldwin C, Bishop-Lilly KA, Biswas B, Broomall S, Chain PS, Chertkov O, Chokoshvili O, Coyne S, Davenport K, Detter JC, Dorman W, Erkkila TH, Folster JP, Frey KG, George M, Gleasner C, Henry M, Hill KK, Hubbard K, Insalaco J, Johnson S, Kitzmiller A, Krepps M, Lo CC, Luu T, McNew LA, Minogue T, Munk CA, Osborne B, Patel M, Reitenga KG, Rosenzweig CN, Shea A, Shen X, Strockbine N, Tarr C, Teshima H, van Gieson E, Verratti K, Wolcott M, Xie G, Sozhamannan S, Gibbons HS, Threat Characterization C (2012) Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2. PLoS One 7:e48228CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barnich N, Boudeau J, Claret L, Darfeuille-Michaud A (2003) Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn’s disease. Mol Microbiol 48:781–794CrossRefPubMedGoogle Scholar
  3. Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, Peeters H, Bommelaer G, Desreumaux P, Colombel JF, Darfeuille-Michaud A (2007) CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Investig 117:1566–1574CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bergan J, Dyve Lingelem AB, Simm R, Skotland T, Sandvig K (2012) Shiga toxins. Toxicon 60:1085–1107CrossRefPubMedGoogle Scholar
  5. Bielaszewska M, Aldick T, Bauwens A, Karch H (2014) Hemolysin of enterohemorrhagic Escherichia coli: structure, transport, biological activity and putative role in virulence. Int J Med Microbiol 304:521–529CrossRefPubMedGoogle Scholar
  6. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462CrossRefPubMedGoogle Scholar
  7. Boisen N, Struve C, Scheutz F, Krogfelt KA, Nataro JP (2008) New adhesin of enteroaggregative Escherichia coli related to the Afa/Dr/AAF family. Infect Immun 76:3281–3292CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boisen N, Melton-Celsa AR, Scheutz F, O’Brien AD, Nataro JP (2015) Shiga toxin 2a and enteroaggregative Escherichia coli – a deadly combination. Gut Microbes 6:272–278CrossRefPubMedPubMedCentralGoogle Scholar
  9. Campellone K, Leong JM (2003) Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr Opin Microbiol 6:82–90CrossRefPubMedGoogle Scholar
  10. Chassaing B, Rolhion N, de Vallee A, Salim SY, Prorok-Hamon M, Neut C, Campbell BJ, Soderholm JD, Hugot JP, Colombel JF, Darfeuille-Michaud A (2011) Crohn disease – associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Investig 121:966–975CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chaudhuri RR, Sebaihia M, Hobman JL, Webber MA, Leyton DL, Goldberg MD, Cunningham AF, Scott-Tucker A, Ferguson PR, Thomas CM, Frankel G, Tang CM, Dudley EG, Roberts IS, Rasko DA, Pallen MJ, Parkhill J, Nataro JP, Thomson NR, Henderson IR (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One 5:e8801CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clements A, Young JC, Constantinou N, Frankel G (2012) Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3:71–87CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cote JP, Charbonneau ME, Mourez M (2013) Glycosylation of the Escherichia coli TibA self-associating autotransporter influences the conformation and the functionality of the protein. PLoS One 8:e80739CrossRefPubMedPubMedCentralGoogle Scholar
  14. Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26–38PubMedGoogle Scholar
  15. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26:822–880CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dale AP, Woodford N (2015) Extra-intestinal pathogenic Escherichia coli (ExPEC): disease, carriage and clones. J Infect 71:615–626CrossRefPubMedGoogle Scholar
  17. Dean P, Kenny B (2009) The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 12:101–109CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dudley EG, Abe C, Ghigo JM, Latour-Lambert P, Hormazabal JC, Nataro JP (2006) An IncI1 plasmid contributes to the adherence of the atypical enteroaggregative Escherichia coli strain C1096 to cultured cells and abiotic surfaces. Infect Immun 74:2102–2114CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elsinghorst EA, Kopecko DJ (1992) Molecular cloning of epithelial cell invasion determinants from enterotoxigenic Escherichia coli. Infect Immun 60:2409–2417PubMedPubMedCentralGoogle Scholar
  20. Elsinghorst EA, Weitz JA (1994) Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer membrane protein. Infect Immun 62:3463–3471PubMedPubMedCentralGoogle Scholar
  21. Estrada-Garcia T, Navarro-Garcia F (2012) Enteroaggregative Escherichia coli pathotype: a genetically heterogeneous emerging foodborne enteropathogen. FEMS Immunol Med Microbiol 66:281–298CrossRefPubMedGoogle Scholar
  22. Farfan MJ, Torres AG (2012) Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun 80:903–913CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fasano A, Noriega FR, Maneval DRJ, Chanasongcram S, Russell R, Guandalini S, Levine MM (1995) Shigella enterotoxin 1: an enterotoxin of Shigella flexneri 2a active in rabbit small intestine in vivo and in vitro. J Clin Investig 95:2853–2861CrossRefPubMedPubMedCentralGoogle Scholar
  24. Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 12:729–733CrossRefGoogle Scholar
  25. Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H (2010) Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 12:89–98CrossRefPubMedGoogle Scholar
  26. Gomes TA, Elias WP, Scaletsky IC, Guth BE, Rodrigues JF, Piazza RM, Ferreira LC, Martinez MB (2016) Diarrheagenic Escherichia coli. Braz J Microbiol 47(Suppl 1):3–30CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gonzales-Siles L, Sjöling AS (2016) The different ecological niches of enterotoxigenic Escherichia coli. Environ Microbiol 5:741–751CrossRefGoogle Scholar
  28. de Groot JC, Schluter K, Carius Y, Quedenau C, Vingadassalom D, Faix J, Weiss SM, Reichelt J, Standfuss-Gabisch C, Lesser CF, Leong JM, Heinz DW, Bussow K, Stradal TE (2011) Structural basis for complex formation between human IRSp53 and the translocated intimin receptor Tir of enterohemorrhagic E. coli. Structure 19:1294–1306CrossRefPubMedPubMedCentralGoogle Scholar
  29. Guignot J, Chaplais C, Coconnier-Polter MH, Servin AL (2007) The secreted autotransporter toxin, Sat, functions as a virulence factor in Afa/Dr diffusely adhering Escherichia coli by promoting lesions in tight junction of polarized epithelial cells. Cell Microbiol 9:204–221CrossRefPubMedGoogle Scholar
  30. Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP (1999) Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 67:5587–5596PubMedPubMedCentralGoogle Scholar
  31. Huang SH, Wan ZS, Chen YH, Jong AY, Kim KS (2001) Further characterization of Escherichia coli brain microvascular endothelial cell invasion gene ibeA by deletion, complementation, and protein expression. J Infect Dis 183:1071–1078CrossRefPubMedGoogle Scholar
  32. Hughes JM, Murad F, Chang B, Guerrant RL (1978) Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature 271:755–756CrossRefPubMedGoogle Scholar
  33. Kaas RS, Friis C, Ussery DW, Aarestrup FM (2012) Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13:577–590CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140CrossRefPubMedGoogle Scholar
  35. Khan NA, Kim Y, Shin S, Kim KS (2007) FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol 9:169–178CrossRefPubMedGoogle Scholar
  36. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS (1992) The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Investig 90:897–905CrossRefPubMedPubMedCentralGoogle Scholar
  37. Korea CG, Ghigo JM, Beloin C (2011) The sweet connection: solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli: multiple E. coli fimbriae form a versatile arsenal of sugar-binding lectins potentially involved in surface-colonisation and tissue tropism. BioEssays 33:300–311CrossRefPubMedGoogle Scholar
  38. Lapaquette P, Bringer MA, Darfeuille-Michaud A (2012) Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol 14:791–807CrossRefPubMedGoogle Scholar
  39. Lara-Tejero M, Galan JE (2001) CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 69:4358–4365CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lara-Tejero M, Galán JE (2002) Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol 10:147–152CrossRefPubMedGoogle Scholar
  41. Lathem WW, Grys TE, Witowski SE, Torres AG, Kaper JB, Tarr PI, Welch RA (2002) StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol Microbiol 45:277–288CrossRefPubMedGoogle Scholar
  42. Law RJ, Gur-Arie L, Rosenshine I, Finlay BB (2013) In vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections. Cold Spring Harb Perspect Med 3:a009977CrossRefPubMedPubMedCentralGoogle Scholar
  43. Le Bouguenec C, Servin AL (2006) Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): hitherto unrecognized pathogens. FEMS Microbiol Lett 256:185–194CrossRefPubMedGoogle Scholar
  44. Lee MS, Koo S, Jeong DG, Tesh VL (2016) Shiga toxins as multi-functional proteins: induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins 8(77):1–23. doi: 10.3390/toxins8030077
  45. Liang S, Hajishengallis G (2010) Heat-labile enterotoxins as adjuvants or anti-inflammatory agents. Immunol Investig 39:449–467CrossRefGoogle Scholar
  46. Lindberg AA, Brown JE, Stromberg N, Westling-Ryd M, Schultz JE, Karlsson KA (1987) Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785PubMedGoogle Scholar
  47. Lugering A, Benz I, Knochenhauer S, Ruffing M, Schmidt MA (2003) The Pix pilus adhesin of the uropathogenic Escherichia coli strain X2194 (O2 : K(−): H6) is related to Pap pili but exhibits a truncated regulatory region. Microbiology 149:1387–1397CrossRefPubMedGoogle Scholar
  48. Ma Z, Jacobsen FE, Giedroc DP (2009) Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem Rev 109:4644–4681CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mann EA, Saeed SA (2012) Gastrointestinal infection as a trigger for inflammatory bowel disease. Curr Opin Gastroenterol 28:24–29CrossRefPubMedGoogle Scholar
  50. McWilliams BD, Torres AG (2014) Enterohemorrhagic Escherichia coli adhesins. Microbiol Spectr 2.  https://doi.org/10.1128/microbiolspec.EHEC-0003-2013
  51. Mellies JL, Lorenzen E (2014) Enterohemorrhagic Escherichia coli virulence gene regulation. Microbiol Spectr 2:EHEC-0004-2013CrossRefPubMedGoogle Scholar
  52. Melton-Celsa AR (2014) Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr 2:EHEC-0024-2013Google Scholar
  53. Ménard LP, Dubreuil JD (2002) Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit Rev Microbiol 28:43–60CrossRefPubMedGoogle Scholar
  54. Miajlovic H, Smith SG (2014) Bacterial self-defence: how Escherichia coli evades serum killing. FEMS Microbiol Lett 354:1–9CrossRefPubMedGoogle Scholar
  55. Mulvey MA (2002) Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257–271CrossRefPubMedGoogle Scholar
  56. Nataro JP, Deng Y, Maneval DR, German AL, Martin WC, Levine MM (1992) Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect Immun 60:2297–2304PubMedPubMedCentralGoogle Scholar
  57. Navarro-Garcia F (2014) Escherichia coli O104:H4 pathogenesis: an enteroaggregative E. coli shiga toxin-producing E. coli : explosive cocktail of high virulence. Microbiol Spectr 2.  https://doi.org/10.1128/microbiolspec.EHEC-0008-2013
  58. Navarro-Garcia F, Sears C, Eslava C, Cravioto A, Nataro JP (1999) Cytoskeletal effects induced by pet, the serine protease enterotoxin of enteroaggregative Escherichia coli. Infect Immun 67:2184–2192PubMedPubMedCentralGoogle Scholar
  59. Nesta B, Spraggon G, Alteri C, Moriel DG, Rosini R, Veggi D, Smith S, Bertoldi I, Pastorello I, Ferlenghi I, Fontana MR, Frankel G, Mobley HLT, Rappuoli R, Pizza M, Serino L, Soriani M (2012) FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections. MBio 3:e00010–e00012CrossRefPubMedPubMedCentralGoogle Scholar
  60. Patel SK, Dotson J, Allen KP, Fleckenstein JM (2004) Identification and molecular characterization of EatA, an autotransporter protein of enterotoxigenic Escherichia coli. Infect Immun 72:1786–1794CrossRefPubMedPubMedCentralGoogle Scholar
  61. Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Limk A, Dimalantak ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, WelchI RA, Blattner FR (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533CrossRefPubMedGoogle Scholar
  62. Porcheron G, Garenaux A, Proulx J, Sabri M, Dozois CM (2013) Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 3:90CrossRefPubMedPubMedCentralGoogle Scholar
  63. Prasadarao NV (2002) Identification of Escherichia coli outer membrane protein A receptor on human brain microvascular endothelial cells. Infect Immun 70:4556–4563CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ristow LC, Welch RA (2016) Hemolysin of uropathogenic Escherichia coli: a cloak or a dagger? BBA 1858:538–545CrossRefPubMedGoogle Scholar
  65. Rolhion N, Barnich N, Claret L, Darfeuille-Michaud A (2005) Strong decrease in invasive ability and outer membrane vesicle release in Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted. J Bacteriol 187:2286–2296CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rolhion N, Barnich N, Bringer MA, Glasser AL, Ranc J, Hebuterne X, Hofman P, Darfeuille-Michaud A (2010) Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut 59:1355–1362CrossRefPubMedPubMedCentralGoogle Scholar
  67. Roy K, Hilliard GM, Hamilton DJ, Luo J, Ostmann MM, Fleckenstein JM (2009) Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature 457:594–598CrossRefPubMedGoogle Scholar
  68. Schmidt MA (2010) LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol 12:1544–1552CrossRefPubMedGoogle Scholar
  69. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 12:725–729CrossRefGoogle Scholar
  70. Servin AL (2005) Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin Microbiol Rev 18:264–292CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121:309–319CrossRefPubMedGoogle Scholar
  72. Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguénec C, Gounon P, Phillips A, Nataro JP (2002) A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Investig 110:1329–1337CrossRefPubMedPubMedCentralGoogle Scholar
  73. Singh AP, Aijaz S (2016) Enteropathogenic E. coli: breaking the intestinal tight junction barrier. F1000Res 4:231CrossRefPubMedCentralGoogle Scholar
  74. Snyder GA, Cirl C, Jiang J, Chen K, Waldhuber A, Smith P, Römmler F, Snyder N, Fresquez T, Dürr S, Tjandra N, Miethke T, Xiao TS (2013) Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic Escherichia coli. Proc NatI Acad Sci USA 110:6985–6990CrossRefGoogle Scholar
  75. Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647PubMedPubMedCentralGoogle Scholar
  76. Spurbeck RR, Stapleton AE, Johnson JR, Walk ST, Hooton TM, Mobley HL (2011) Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of ygi and yad fimbriae. Infect Immun 79:4753–4763CrossRefPubMedPubMedCentralGoogle Scholar
  77. Turner SM, Scott-Tucker A, Cooper LM, Henderson IR (2006) Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol Lett 263:10–20CrossRefPubMedGoogle Scholar
  78. Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, Giske CG, Naas T, Carattoli A, Martínez-Medina M, Bosch J, Retamar P, Rodríguez-Baño J, Baquero F, Soto SM, Gerdes K (2016) Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev 40:437–463CrossRefPubMedGoogle Scholar
  79. Weiglmeier PR, Rosch P, Berkner H (2010) Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C. Toxins 2:2213–2229CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wiles TJ, Kulesus RR, Mulvey MA (2008) Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 85:11–19CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL (2011) Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80:1420–1438CrossRefPubMedGoogle Scholar
  82. Zhou M, Yang Y, Chen P, Hu H, Hardwidge PR, Zhu G (2015) More than a locomotive organelle: flagella in Escherichia coli. Appl Microbiol Biotechnol 99:8883–8890CrossRefPubMedGoogle Scholar
  83. Zhuang X, Chen Z, He C, Wang L, Zhou R, Yan D, Ge B (2017) Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins. Cell Mol Immunol 14:237–244CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations