Advertisement

Campylobacter spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Campylobacter jejuni chromosome: 1,641,481 bp; 1,643 predicted ORFs (Gundogdu et al. 2007; Parkhill et al. 2000)

    • Plasmid pVir: 37,468 bp; 54 predicted ORFs (Bacon et al. 2002)

  • Cell morphology:
    • Curved or spiral bacilli; “twisted bacteria” (Fig. 14.1)

    • Lipooligosaccharide (LOS, rough LPS) outer membrane:
      • Highly variable sialylated structures; plays a role in immune avoidance (Guerry et al. 2000).

      • Some structures resemble human neuronal gangliosides – molecular mimicry can lead to autoimmune reactions (Bowes et al. 2002; Yuki 2001).
        • For example, Guillain–Barré Syndrome occurs in ~1 out of 1,000 cases of campylobacteriosis (Godschalk et al. 2004).

    • Capsule (Karlyshev et al. 2005):
      • Highly variable polysaccharides

      • Plays a role in adherence to host cells and anti-phagocytosis immune evasion

    • Flagella:
      • Either monopolar or bipolar.

      • Composed of FlaA (major) and FlaB (minor) flagellin subunits; undergo phase variation and antigen variation – evasion of host immune system.

      • Contain significant levels of O-linked glycosylation; important for assembly and adherence to host intestinal epithelial cells.

      • Flagellar movement through the mucus layer plays an essential role in colonization and virulence.

      • Flagellar type 3 secretion system (T3SS):
        • Functions in the secretion of bacterial effectors, such as FlaC (Song et al. 2004) and Campylobacter invasive antigen (Cia) proteins (Grant et al. 1993; Konkel et al. 2004) (see below)

References

  1. Backert S, Boehm M, Wessler S, Tegtmeyer N (2013) Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both? Cell Commun Signal 11:72CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bacon DJ, Alm RA, Hu L, Hickey TE, Ewing CP, Batchelor RA, Trust TJ, Guerry P (2002) DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect Immun 70:6242–6250CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boehm M, Lind J, Backert S, Tegtmeyer N (2015) Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration. Eur J Microbiol Immunol (Bp) 5:68–80CrossRefGoogle Scholar
  4. Bolton DJ (2015) Campylobacter virulence and survival factors. Food Microbiol 48:99–108CrossRefPubMedGoogle Scholar
  5. Bowes T, Wagner ER, Boffey J, Nicholl D, Cochrane L, Benboubetra M, Conner J, Furukawa K, Furukawa K, Willison HJ (2002) Tolerance to self gangliosides is the major factor restricting the antibody response to lipopolysaccharide core oligosaccharides in Campylobacter jejuni strains associated with Guillain-Barre syndrome. Infect Immun 70:5008–5018CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carswell CL, Rigden MD, Baenziger JE (2008) Expression, purification, and structural characterization of CfrA, a putative iron transporter from Campylobacter jejuni. J Bacteriol 190:5650–5662CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dugar G, Svensson SL, Bischler T, Waldchen S, Reinhardt R, Sauer M, Sharma CM (2016) The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat Commun 7:11667CrossRefPubMedPubMedCentralGoogle Scholar
  8. Epps SV, Harvey RB, Hume ME, Phillips TD, Anderson RC, Nisbet DJ (2013) Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. Int J Environ Res Public Health 10:6292–6304CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fais T, Delmas J, Serres A, Bonnet R, Dalmasso G (2016) Impact of CDT toxin on human diseases. Toxins 8:220CrossRefPubMedCentralGoogle Scholar
  10. Freitag CM, Strijbis K, van Putten JP (2016) Host cell binding of the flagellar tip protein of Campylobacter jejuni. Cell Microbiol 2017;19:e12714Google Scholar
  11. Godschalk PCR, Heikema AP, Gilbert M, Komagamine T, Ang CW, Glerum J, Brochu D, Li J, Yuki N, Jacobs BC, van Belkum A, Endtz HP (2004) The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome. J Clin Investig 114:1659–1665CrossRefPubMedPubMedCentralGoogle Scholar
  12. Grant CC, Konkel ME, Cieplak WJ, Tompkins LS (1993) Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun 61:1764–1771PubMedPubMedCentralGoogle Scholar
  13. Guerry P, Ewing CP, Hickey TE, Prendergast MM, Moran AP (2000) Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect Immun 68:6656–6662CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, Wren BW (2007) Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8:162CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gunther NW, Chen CY (2009) The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol 26:44–51CrossRefPubMedGoogle Scholar
  16. Hofreuter D (2014) Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol 4:137CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jin S, Song YC, Emili A, Sherman PM, Chan VL (2003) JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90 alpha and triggers signalling pathways leading to the activation of NF-kB and p38 MAP kinase in epithelial cells. Cell Microbiol 5:165–174CrossRefPubMedGoogle Scholar
  18. Karlyshev AV, Champion OL, Churcher C, Brisson JR, Jarrell HC, Gilbert M, Brochu D, St Michael F, Li J, Wakarchuk WW, Goodhead I, Sanders M, Stevens K, White B, Parkhill J, Wren BW, Szymanski CM (2005) Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol Microbiol 55:90–103CrossRefPubMedGoogle Scholar
  19. Konkel ME, Garvis SG, Tipton SL, Anderson DEJ, Cieplak WJ (1997) Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol Microbiol 24:953–963CrossRefPubMedGoogle Scholar
  20. Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D, Raphael B, Mickelson J (2004) Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186:3296–3303CrossRefPubMedPubMedCentralGoogle Scholar
  21. Krause-Gruszczynska M, Boehm M, Rohde M, Tegtmeyer N, Takahashi S, Buday L, Oyarzabal OA, Backert S (2011) The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2. Cell Commun Signal 9:32CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lai C-K, Chen Y-A, Lin C-J, Lin H-J, Kao M-C, Huang M-Z, Lin Y-H, Chiang-Ni C, Chen C-J, Lo U-G, Lin L-C, Lin H, Hsieh J-T, Lai C-H (2016) Molecular mechanisms and potential clinical applications of Campylobacter jejuni cytolethal distending toxin. Front Cell Infect Microbiol 6:9CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lara-Tejero M, Galan JE (2001) CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 69:4358–4365CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lara-Tejero M, Galán JE (2002) Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol 10:147–152CrossRefPubMedGoogle Scholar
  25. Larson CL, Samuelson DR, Eucker TP, O’Loughlin JL, Konkel ME (2013) The fibronectin-binding motif within FlpA facilitates Campylobacter jejuni adherence to host cell and activation of host cell signaling. Emerg Microbes Infect 2:e65CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leon-Kempis Mdel R, Guccione E, Mulholland F, Williamson MP, Kelly DJ (2006) The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol 60:1262–1275CrossRefPubMedGoogle Scholar
  27. Miller CE, Rock JD, Ridley KA, Williams PH, Ketley JM (2008) Utilization of lactoferrin-bound and transferrin-bound iron by Campylobacter jejuni. J Bacteriol 190:1900–1911CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miller CE, Williams PH, Ketley JM (2009) Pumping iron: mechanisms for iron uptake by Campylobacter. Microbiology 155:3157–3165CrossRefPubMedGoogle Scholar
  29. Monteville MR, Yoon JE, Konkel ME (2003) Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149:153–165CrossRefPubMedGoogle Scholar
  30. Moser I, Schroeder W, Salnikow J (1997) Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol Lett 157:233–238CrossRefPubMedGoogle Scholar
  31. Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A (2006) Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun 74:5433–5444CrossRefPubMedPubMedCentralGoogle Scholar
  32. Neal-McKinney JM, Konkel ME (2012) The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Front Cell Infect Microbiol 2:31CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778CrossRefPubMedGoogle Scholar
  34. Ó Croinin T, Backert S (2012) Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol 2:25CrossRefPubMedPubMedCentralGoogle Scholar
  35. Palyada K, Sun YQ, Flint A, Butcher J, Naikare H, Stintzi A (2009) Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics 10:481CrossRefPubMedPubMedCentralGoogle Scholar
  36. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Pennk CW, Quail MA, Rajandream M-A, Rutherford KM, Vliet AHMV, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668CrossRefPubMedGoogle Scholar
  37. Pei Z, Blaser MJ (1993) PEB, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J Biol Chem 268:18717–18725PubMedGoogle Scholar
  38. Pickett CL, Auffenberg T, Pesci EC, Sheen VL, Jusuf SS (1992) Iron acquisition and hemolysin production by Campylobacter jejuni. Infect Immun 60:3872–3877PubMedPubMedCentralGoogle Scholar
  39. Poly F, Ewing C, Goon S, Hickey TE, Rockabrand D, Majam G, Lee L, Phan J, Savarino NJ, Guerry P (2007) Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect Immun 75:3859–3867CrossRefPubMedPubMedCentralGoogle Scholar
  40. Samuelson DR, Konkel ME (2013) Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni. Cell Commun Signal 11:82CrossRefPubMedPubMedCentralGoogle Scholar
  41. Song YC, Jin S, Louie H, Ng D, Lau R, Zhang Y, Weerasekera R, Al Rashid S, Ward LA, Der SD, Chan VL (2004) FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol Microbiol 53:541–553CrossRefPubMedGoogle Scholar
  42. Svensson SL, Huynh S, Parker CT, Gaynor EC (2015) The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope. Mol Microbiol 96:189–209CrossRefPubMedGoogle Scholar
  43. Szymanski CM, Gaynor EC (2012) How a sugary bug gets through the day: recent developments in understanding fundamental processes impacting Campylobacter jejuni pathogenesis. Gut Microbes 3:135–144CrossRefPubMedPubMedCentralGoogle Scholar
  44. van Putten JP, van Alphen LB, Wosten MM, de Zoete MR (2009) Molecular mechanisms of Campylobacter infection. Curr Top Microbiol Immunol 337:197–229PubMedGoogle Scholar
  45. van Vliet AHM, Wooldridge KG, Ketley JM (1998) Iron responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298PubMedPubMedCentralGoogle Scholar
  46. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793CrossRefPubMedGoogle Scholar
  47. Young KT, Davis LM, Dirita VJ (2007) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679CrossRefPubMedGoogle Scholar
  48. Yuki N (2001) Infectious origins of, and molecular mimicry in, Guillain-Barré and Fisher syndromes. Lancet Infect Dis 1:29–37CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations