Borrelia spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics:
    • Borrelia burgdorferi chromosome: 910,725 bp; 853 predicted ORFs (Fraser et al. 1997)

    • Borrelia burgdorferi plasmids (Stewart et al. 2005):
      • Strain-specific numbers of linear and circular plasmids, several of which are required for virulence and the complex life cycle in ticks and mammals

      • ~9 linear plasmids: lp5, lp17, lp21, lp25, lp28 (1–4), lp36, lp38, lp54, and lp56

      • ~11 circular plasmids: cp9, cp26, and cp32 (1–9)

      • Encode most of the differentially expressed outer surface lipoproteins

  • Cell morphology:
    • Spirochete – tightly coiled corkscrew shape (Fig. 13.1) (Charon et al. 2012):
      • Fourteen to sixty endoflagella (axial filaments):
        • Anchored at both ends of the cell and run lengthwise between the inner and outer membranes in the periplasmic space; enclosed in outer sheath

        • Causes twisting motion used for motility

    • Outer membrane:
      • No LPS (endotoxin); does not activate TLR4 (Radolf et al. 2012).

      • Contains diverse and unique assortment (>100) of lipoproteins and glycolipids, including cholesterol; major lipoprotein is OspA.

      • Antigenic variation of lipoproteins is a major virulence factor.

  • Gram stain:
    • Gram-negative-like: no LPS but outer membranes contain many diverse hydrophobic lipoproteins

  • Growth:
    • Anaerobic or microaerophilic growth; slow grower; requires N-acetylglucosamine (NAG) for growth; auxotrophic for all amino acids, nucleic acids, and fatty acids

    • Reservoirs: wild and domestic animals such as white-footed field mice, rodents, deer, and birds

    • Fifty-two Borrelia species (Cutlera et al. 2017):
      • Twenty-one – Lyme disease group (B. burgdorferi sensu lato group)

      • Twenty-nine – relapsing fever group (B. recurrentis)

      • Two – nonconformist group

References

  1. Brissette CA, Gaultney RA (2014) That’s my story, and I’m sticking to it – an update on B. burgdorferi adhesins. Front Cell Infect Microbiol 4:41CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cervantes JL, Hawley KL, Benjamin SJ, Weinerman B, Luu SM, Salazar JC (2014) Phagosomal TLR signaling upon Borrelia burgdorferi infection. Front Cell Infect Microbiol 4:55PubMedPubMedCentralGoogle Scholar
  3. Charon NW, Cockburn A, Li C, Liu J, Miller KA, Miller MR, Motaleb MA, Wolgemuth CW (2012) The unique paradigm of spirochete motility and chemotaxis. Annu Rev Microbiol 66:349–370CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cutlera SJ, Ruzic-Sabljicb E, Potkonjakc A (2017) Emerging borreliae – expanding beyond Lyme borreliosis. Mol Cell Probes 31:22–27CrossRefGoogle Scholar
  5. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fuji C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586CrossRefPubMedGoogle Scholar
  6. Hartiala P, Hytönen J, Suhonen J, Leppäranta O, Tuominen-Gustafsson H, Viljanen MK (2008) Borrelia burgdorferi inhibits human neutrophil functions. Microbes Infect 10:60–68CrossRefPubMedGoogle Scholar
  7. Kelesidis T (2014) The cross-talk between spirochetal lipoproteins and immunity. Front Immunol 5:310PubMedPubMedCentralGoogle Scholar
  8. Petnicki-Ocwieja T, Kern A (2014) Mechanisms of Borrelia burgdorferi internalization and intracellular innate immune signaling. Front Cell Infect Microbiol 4:175CrossRefPubMedPubMedCentralGoogle Scholar
  9. Posey JE, Gherardini FC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653CrossRefPubMedGoogle Scholar
  10. Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99PubMedPubMedCentralGoogle Scholar
  11. Sapi E, Bastian SL, Mpoy CM, Scott S, Rattelle A, Pabbati N, Poruri A, Burugu D, Theophilus PA, Pham TV, Datar A, Dhaliwal NK, MacDonald A, Rossi MJ, Sinha SK, Luecke DF (2012) Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One 7:e48277CrossRefPubMedPubMedCentralGoogle Scholar
  12. Stewart PE, Byram R, Grimm D, Tilly K, Rosa PA (2005) The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid 53:1–13CrossRefPubMedGoogle Scholar
  13. Zhang J-R, Norris SJ (1998) Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun 66:3689–3697PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations