Advertisement

Bordetella spp.

  • Douglas I. Johnson
Chapter

Abstract

  • Genomics (Parkhill et al. 2003):
    • Bordetella pertussis Tohama I chromosome: 4,086,186 bp; 3816 predicted ORFs

    • Bordetella bronchiseptica RB50 chromosome: 5,338,400 bp; 5007 predicted ORFs

    • Bordetella parapertussis 12,822 chromosome: 4,773,551 bp; 4004 predicted ORFs

  • Cell morphology:
    • Very small coccobacilli; usually single cells or pairs (Fig. 12.1).

    • B. bronchiseptica is motile using flagella; B. pertussis is not – flagella genes are deleted.

  • Gram stain:
    • Gram negative

  • Growth:
    • Obligate aerobes; oxidase positive

    • Fastidious slow growth; requires nicotinamide

    • Humans are only verified reservoir for Bordetella pertussis; no environmental reservoirs

    • Nine species: three primary mammalian pathogenic species
      • Bordetella pertussis – human pathogen

      • Bordetella bronchiseptica – occasional human pathogen; other mammals

      • Bordetella parapertussis – other mammals; dogs (“kennel cough”)

    • Biofilm former – generally noninvasive

References

  1. Beall B, Sanden GN (1995) A Bordetella pertussis fepA homologue required for utilization of exogenous ferric enterobactin. Microbiology 141:3193–3205CrossRefPubMedGoogle Scholar
  2. Brickman TJ, Armstrong SK (2007) Impact of alcaligin siderophore utilization on in vivo growth of Bordetella pertussis. Infect Immun 75:5305–5312CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brown DR, Parker CD (1987) Cloning of the filamentous hemagglutinin of Bordetella pertussis and its expression in Escherichia coli. Infect Immun 55:154–161PubMedPubMedCentralGoogle Scholar
  4. Carbonetti NH (2016) Bordetella pertussis: new concepts in pathogenesis and treatment. Curr Opin Infect Dis 29:287–294CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cookson BT, Tyler AN, Goldman WE (1989) Primary structure of the peptidoglycan-derived tracheal cytotoxin of Bordetella pertussis. Biochemist 28:1744–1749CrossRefGoogle Scholar
  6. Coutte L, Huot L, Antoine R, Slupek S, Merkel TJ, Chen Q, Stibitz S, Hot D, Locht C (2016) The multifaceted RisA regulon of Bordetella pertussis. Sci Rep 6:32774CrossRefPubMedPubMedCentralGoogle Scholar
  7. de Gouw D, Diavatopoulos DA, Bootsma HJ, Hermans PW, Mooi FR (2011) Pertussis: a matter of immune modulation. FEMS Microbiol Rev 35:441–474CrossRefPubMedGoogle Scholar
  8. do Vale A, Cabanes D, Sousa S (2016) Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol 7:42PubMedPubMedCentralGoogle Scholar
  9. Higgs R, Higgins SC, Ross PJ, Mills KH (2012) Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol 5:485–500PubMedGoogle Scholar
  10. Inatsuka CS, Julio SM, Cotter PA (2005) Bordetella filamentous hemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. Proc NatI Acad Sci USA 102:18578–18583CrossRefGoogle Scholar
  11. Katada T, Tamura M, Ui M (1983) The A protomer of islet-activating protein, pertussis toxin, as an active peptide catalyzing ADP-ribosylation of a membrane protein. Arch Biochem Biophys 224:290–298CrossRefPubMedGoogle Scholar
  12. Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ (1991) Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc NatI Acad Sci USA 88:345–349CrossRefGoogle Scholar
  13. Livey I, Duggleby CJ, Robinson A (1987) Cloning and nucleotide sequence analysis of the serotype 2 fimbrial subunit gene of Bordetella pertussis. Mol Microbiol 1:203–209CrossRefPubMedGoogle Scholar
  14. Melvin JA, Scheller EV, Miller JF, Cotter PA (2014) Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 12:274–288CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mooi FR, ter Avest A, van der Heide HGJ (1990) Structure of the Bordetella pertussis gene coding for the serotype 3 fimbrial subunit. FEMS Microbiol Lett 66:327–332CrossRefGoogle Scholar
  16. Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF (2005) A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol 58:267–279CrossRefPubMedGoogle Scholar
  17. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O'Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40CrossRefPubMedGoogle Scholar
  18. Riaz MR, Siddiqi AR, Bokhari H (2015) Structural and functional studies of BapC protein of Bordetella pertussis. Microbiol Res 174:56–61CrossRefPubMedGoogle Scholar
  19. Schmidt G, Goehring UM, Schirmer J, Lerm M, Aktories K (1999) Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for rho GTPases. J Biol Chem 274:31875–31881CrossRefPubMedGoogle Scholar
  20. Stenson TH, Allen AG, Al-Meer JA, Maskell D, Peppler MS (2005) Bordetella pertussis risA, but not risS, is required for maximal expression of Bvg-repressed genes. Infect Immun 73:5995–6004CrossRefPubMedPubMedCentralGoogle Scholar
  21. Tuomanen E, Weiss A (1985) Characterization of two adhesins of Bordetella pertussis for human ciliated respiratory-epithelial cells. J Infect Dis 152:118–125CrossRefPubMedGoogle Scholar
  22. Vanderpool CK, Armstrong SK (2001) The Bordetella bhu locus is required for heme iron utilization. J Bacteriol 183:4278–4287CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations