Streptococcus spp.

  • Douglas I. Johnson


  • Genomics (Maruyama et al. 2016):
    • Streptococcus pyogenes M1 strain chromosome: 1,852,442 bp; 1752 predicted ORFs (Ferretti et al. 2001)

    • Streptococcus pneumoniae TIGR4 chromosome: 2,160,837 bp; 2236 predicted ORFs (Tettelin et al. 2001)

    • Streptococcus agalactiae 2603 V/R isolate chromosome: 2,160,267 bp; 2175 predicted ORFs (Tettelin et al. 2002)

  • Cell morphology:
    • Cocci: chains of cells (S. pyogenes) (Fig. 10.1) or diplococci (S. pneumoniae)


  1. Areschoug T, Stalhammar-Carlemalm M, Karlsson I, Lindahl G (2002) Streptococcal beta protein has separate binding sites for human factor H and IgA-Fc. J Biol Chem 277:12642–12648CrossRefPubMedGoogle Scholar
  2. Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, Facciotti C, Muzzi A, Giusti F, Emolo C, Sinisi A, Hilleringmann M, Pansegrau W, Censini S, Rappuoli R, Covacci A, Masignani V, Barocchi MA (2008) A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol 190:5480–5492CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baron MJ, Bolduc GR, Goldberg MB, Auperin TC, Madoff LC (2004) Alpha C protein of group B Streptococcus binds host cell surface glycosaminoglycan and enters cells by an actin-dependent mechanism. J Biol Chem 279:24714–24723CrossRefPubMedGoogle Scholar
  4. Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S (2001) Alpha-enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287CrossRefPubMedGoogle Scholar
  5. Berry AM, Lock RA, Hansman D, Paton JC (1989) Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect Immun 57:2324–2330PubMedPubMedCentralGoogle Scholar
  6. Berry AM, Lock RA, Paton JC (1996) Cloning and characterization of nanB, a second Streptococcus pneumoniae neuraminidase gene, and purification of the NanB enzyme from recombinant Escherichia coli. J Bacteriol 178:4854–4860CrossRefPubMedPubMedCentralGoogle Scholar
  7. Block SL (2014) Streptococcal pharyngitis: guidelines, treatment issues, and sequelae. Pediatr Ann 43:11–16PubMedGoogle Scholar
  8. Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ (2016) Streptococcus pyogenes adhesion and colonization. FEBS Lett 590:3739–3757CrossRefPubMedGoogle Scholar
  9. Brown JS, Gilliland SM, Holden DW (2001) A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40:572–585CrossRefPubMedGoogle Scholar
  10. Cheng Q, Stafslien D, Purushothaman SS, Cleary P (2002) The group B Streptococcal C5a peptidase Is both a specific protease and an invasin. Infect Immun 70:2408–2413Google Scholar
  11. Chiang-Ni C, Wu J-J (2008) Effects of streptococcal pyrogenic exotoxin B on pathogenesis of Streptococcus pyogenes. J Formos Med Assoc 107:677–685CrossRefPubMedGoogle Scholar
  12. Churchward G (2007) The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci. Mol Microbiol 64:34–41CrossRefPubMedGoogle Scholar
  13. Cleary PP (1992) Streptococcal C5a peptidase is a highly specific endopeptidase. Infect Immun 60:5219–5223PubMedPubMedCentralGoogle Scholar
  14. Cockeran R, Anderson R, Feldman C (2002) The role of pneumolysin in the pathogenesis of Streptococcus pneumoniae infection. Curr Opin Infect Dis 15:235–239CrossRefPubMedGoogle Scholar
  15. Cole JN, Barnett TC, Nizet V, Walker MJ (2011) Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9:724–736CrossRefPubMedGoogle Scholar
  16. Cunningham MW (2016) Post-streptococcal autoimmune sequelae: rheumatic fever and beyond. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes : basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma City, pp 837–873Google Scholar
  17. Dalia AB, Standish AJ, Weiser JN (2010) Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect Immun 78:2108–2116CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dave S, Carmicle S, Hammerschmidt S, Pangburn MK, McDaniel LS (2004) Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J Immunol 173:471–477CrossRefPubMedGoogle Scholar
  19. Davis KM, Akinbi HT, Standish AJ, Weiser JN (2008) Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by Streptococcus pneumoniae. PLoS Pathog 4:e1000241CrossRefPubMedPubMedCentralGoogle Scholar
  20. Devi AS, Ponnuraj K (2010) Cloning, expression, purification and ligand binding studies of novel fibrinogen-binding protein FbsB of Streptococcus agalactiae. Protein Expr Purif 74:148–155CrossRefPubMedGoogle Scholar
  21. Fagan PK, Reinscheid D, Gottschalk B, Chhatwal GS (2001) Identification and characterization of a novel secreted immunoglobulin binding protein from group A streptococcus. Infect Immun 69:4851–4857CrossRefPubMedPubMedCentralGoogle Scholar
  22. Feil SC, Ascher DB, Kuiper MJ, Tweten RK, Parker MW (2014) Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J Mol Biol 426:785–792CrossRefPubMedGoogle Scholar
  23. Feldman C, Anderson R (2016) Epidemiology, virulence factors and management of the pneumococcus. F1000 Res 5:2320CrossRefGoogle Scholar
  24. Fernie-King BA, Seilly DJ, Willers C, Würzner R, Davies A, Lachmann PJ (2001) Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology 103:390–398CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R (2001) Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc NatI Acad Sci USA 98:4658–4663CrossRefGoogle Scholar
  26. Ferretti JJ, Stevens DL, Fischetti VA (2016) Streptococcus pyogenes: basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma CityGoogle Scholar
  27. Fiedler T, Koller T, Kreikemeyer B (2015) Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Front Cell Infect Microbiol 5:15CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fischetti VA (2016) M protein and other surface proteins on streptococci. Ferretti JJ, ., Stevens DL, Fischetti VA Streptococcus pyogenes : basic biology to clinical manifestations [internet]. Oklahoma City: University of Oklahoma Health Sciences Center, 27–53Google Scholar
  29. Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62CrossRefPubMedGoogle Scholar
  30. Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR (2000) Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 68:5690–5695CrossRefPubMedPubMedCentralGoogle Scholar
  31. Graham MR, Smoot LM, Migliaccio CA, Virtaneva K, Sturdevant DE, Porcella SF, Federle MJ, Adams GJ, Scott JR, Musser JM (2002) Virulence control in group A streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc NatI Acad Sci USA 99:13855–13860CrossRefGoogle Scholar
  32. Harris TO, Shelver DW, Bohnsack JF, Rubens CE (2003) A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen. J Clin Investig 111:61–70CrossRefPubMedPubMedCentralGoogle Scholar
  33. Henriques-Normark B, Tuomanen EI (2013) The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med; 3:a010215:1–16Google Scholar
  34. Holmes AR, McNab R, Millsap KW, Rohde M, Hammerschmidt S, Mawdsley JL, Jenkinson HF (2001) The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 41:1395–1408CrossRefPubMedGoogle Scholar
  35. Hynes W, Sloan M (2016) Secreted extracellular virulence factors. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes : basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma City, pp 405–444Google Scholar
  36. Hynes WL, Dixon AR, Walton SL, Arigides LJ (2000) The extracellular hyaluronidase gene (hylA) of Streptococcus pyogenes. FEMS Microbiol Lett 184:109–112CrossRefPubMedGoogle Scholar
  37. Jensch I, Gamez G, Rothe M, Ebert S, Fulde M, Somplatzki D, Bergmann S, Petruschka L, Rohde M, Nau R, Hammerschmidt S (2010) PavB is a surface-exposed adhesin of Streptococcus pneumoniae contributing to nasopharyngeal colonization and airways infections. Mol Microbiol 77:22–43CrossRefPubMedGoogle Scholar
  38. Jiang S, Wessels MR (2014) BsaB, a novel adherence factor of group B Streptococcus. Infect Immun 82:1007–1016CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jiang SM, Cieslewicz MJ, Kasper DL, Wessels MR (2005) Regulation of virulence by a two-component system in group B streptococcus. J Bacteriol 187:1105–1113CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301CrossRefPubMedGoogle Scholar
  41. Kawabata S, Tamura Y, Murakami J, Terao Y, Nakagawa I, Hamada S (2002) A novel, anchorless streptococcal surface protein that binds to human immunoglobulins. Biochem Biophys Res Commun 296:1329–1333CrossRefPubMedGoogle Scholar
  42. Lang S, Palmer M (2003) Characterization of Streptococcus agalactiae CAMP factor as a pore-forming toxin. J Biol Chem 278:38167–38173CrossRefPubMedGoogle Scholar
  43. Li S, Kelly SJ, Lamani E, Ferraroni M, Jedrzejas MJ (2000) Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. EMBO J 19:1228–1240CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lukomski S, Bachert BA, Squeglia F, Berisio R (2017) Collagen-like proteins of pathogenic streptococci. Mol Microbiol 103:919–930CrossRefPubMedGoogle Scholar
  45. Maisey HC, Doran KS, Nizet V (2008) Recent advances in understanding the molecular basis of group B Streptococcus virulence. Exp Rev Mol Med 10:e27CrossRefGoogle Scholar
  46. Maruyama F, Watanabe T, Nakagawa I (2016) Streptococcus pyogenes genomics. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes: basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma City, pp 171–249Google Scholar
  47. McCormick JK, Yarwood JM, Schlievert PM (2001) Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol 55:77–104CrossRefPubMedGoogle Scholar
  48. McMillan DJ, Davies MR, Good MF, Sriprakash KS (2004) Immune response to superoxide dismutase in group A streptococcal infection. FEMS Immunol Med Microbiol 40:249–256CrossRefPubMedGoogle Scholar
  49. Mello LV, De Groot BL, Li S, Jedrzejas MJ (2002) Structure and flexibility of Streptococcus agalactiae hyaluronate lyase complex with its substrate. Insights into the mechanism of processive degradation of hyaluronan. J Biol Chem 277:36678–36688CrossRefPubMedGoogle Scholar
  50. Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP (2011) Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9:670–681CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D (2011) Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev 24:557–591CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AGO, Maggi T, Taddei AR, Grandi G, Telford JL (2005) Group A streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc NatI Acad Sci USA 102:15641–15646CrossRefGoogle Scholar
  53. Nagiec MJ, Lei B, Parker SK, Vasil ML, Matsumoto M, Ireland RM, Beres SB, Hoe NP, Musser JM (2004) Analysis of a novel prophage-encoded group A Streptococcus extracellular phospholipase A(2). J Biol Chem 279:45909–45918CrossRefPubMedGoogle Scholar
  54. Nelson DC, Garbe J, Collin M (2011) Cysteine proteinase SpeB from Streptococcus pyogenes – a potent modifier of immunologically important host and bacterial proteins. Biol Chem 392:1077–1088CrossRefPubMedGoogle Scholar
  55. Nizet V (2002) Streptococcal beta-hemolysins: genetics and role in disease pathogenesis. Trends Microbiol 10:575–580CrossRefPubMedGoogle Scholar
  56. Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, De Azavedo JC (2000) Genetic locus for streptolysin S production by group A streptococcus. Infect Immun 68:4245–4254CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nolan M, Bouldin SD, Bock PE (2013) Full time course kinetics of the streptokinase-plasminogen activation pathway. J Biol Chem 288:29482–29493CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nordstrand A, Norgren M, Ferretti JJ, Holm SE (1998) Streptokinase as a mediator of acute post-streptococcal glomerulonephritis in an experimental mouse model. Infect Immun 66(1):315–321Google Scholar
  60. O’Seaghdha M, Wessels MR (2013) Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. PLoS Pathog 9:e1003394CrossRefPubMedPubMedCentralGoogle Scholar
  61. Oggioni MR, Memmi G, Maggi T, Chiavolini D, Iannelli F, Pozzi G (2003) Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol Microbiol 49:795–805CrossRefPubMedGoogle Scholar
  62. Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61:1196–1210CrossRefPubMedPubMedCentralGoogle Scholar
  63. Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala’Aldeen DA, Tuomanen EI (2009) Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Investig 119:1638–1646CrossRefPubMedPubMedCentralGoogle Scholar
  64. Påhlman LI, Mörgelin M, Eckert J, Johansson L, Russell W, Riesbeck K, Soehnlein O, Lindbom L, Norrby-Teglund A, Schumann RR, Björck L, Herwald H (2006) Streptococcal M protein: a multipotent and powerful inducer of inflammation. J Immunol 177:1221–1228CrossRefPubMedGoogle Scholar
  65. Park SE, Jiang S, Wessels MR (2012) CsrRS and environmental pH regulate group B streptococcus adherence to human epithelial cells and extracellular matrix. Infect Immun 80:3975–3984CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pawel-Rammingen UV, Johansson BP, Bjorck L (2002) IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21:1607–1615CrossRefGoogle Scholar
  67. Peraro MD, van der Goot FG (2016) Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 14:77–92CrossRefGoogle Scholar
  68. Poll TVD, Opal SM (2009) Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374:1543–1556CrossRefPubMedGoogle Scholar
  69. Poyart C, Pellegrini E, Gaillot O, Boumaila C, Baptista M, Trieu-Cuot P (2001) Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae. Infect Immun 69:5098–5106CrossRefPubMedPubMedCentralGoogle Scholar
  70. Proft T, Fraser JD (2016) Streptococcal superantigens: biological properties and potential role in disease. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes: basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma City, pp 445–485Google Scholar
  71. Ragunathan P, Ponnuraj K (2011) Expression, purification and structural analysis of a fibrinogen receptor FbsA from Streptococcus agalactiae. Protein J 30:159–166CrossRefPubMedGoogle Scholar
  72. Rasmussen M, Müller HP, Björck L (1999) Protein GRAB of Streptococcus pyogenes regulates proteolysis at the bacterial surface by binding alpha2-macroglobulin. J Biol Chem 274:15336–15344CrossRefPubMedGoogle Scholar
  73. Ren B, Szalai AJ, Hollingshead SK, Briles DE (2004) Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface. Infect Immun 72:114–122CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rodriguez-Iturbe B, Haas M (2016) Post-Streptococcal glomerulonephritis. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes: basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma City, pp 813–836Google Scholar
  75. Romero-Espejel ME, Gonzalez-Lopez MA, Olivares-Trejo Jde J (2013) Streptococcus pneumoniae requires iron for its viability and expresses two membrane proteins that bind haemoglobin and haem. Metallomics 5:384–389CrossRefPubMedGoogle Scholar
  76. Romero-Espejel ME, Rodriguez MA, Chavez-Munguia B, Rios-Castro E, Olivares-Trejo Jde J (2016) Characterization of Spbhp-37, a hemoglobin-binding protein of Streptococcus pneumoniae. Front Cell Infect Microbiol 6:47CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ros IMY (2016) Streptococcus pyogenes pili. Ferretti JJ, ., Stevens DL, Fischetti VA Streptococcus pyogenes : basic biology to clinical manifestations [internet]. Oklahoma City: University of Oklahoma Health Sciences Center, 55–66Google Scholar
  78. Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A, Masure HR (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 25:819–829CrossRefPubMedGoogle Scholar
  79. Rosini R, Margarit I (2015) Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol 5:6CrossRefPubMedPubMedCentralGoogle Scholar
  80. Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M, Maione D, Taddei A, Santi I, Ghezzo C, Brettoni C, Buccato S, Margarit I, Grandi G, Telford JL (2006) Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol Microbiol 61:126–141CrossRefPubMedGoogle Scholar
  81. Santi I, Scarselli M, Mariani M, Pezzicoli A, Masignani V, Taddei A, Grandi G, Telford JL, Soriani M (2007) BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol Microbiol 63:754–767CrossRefPubMedGoogle Scholar
  82. Smeesters PR, McMillan DJ, Sriprakash KS (2010) The streptococcal M protein: a highly versatile molecule. Trends Microbiol 18:275–282CrossRefPubMedGoogle Scholar
  83. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26:422–447CrossRefPubMedPubMedCentralGoogle Scholar
  84. Spellerberg B, Rozdzinski E, Martin S, Weber-Heynemann J, Schnitzler N, Lütticken R, Podbielski A (1999) Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun 67:871–878PubMedPubMedCentralGoogle Scholar
  85. Sumby P, Whitney AR, Graviss EA, DeLeo FR, Musser JM (2006) Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2:e5CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498–506CrossRefPubMedGoogle Scholar
  87. Tettelin H, Masignani V, Cieslewicz MJ, Eisen JA, Peterson S, Wessels MR, Paulsen IT, Nelson KE, Margarit I, Read TD, Madoff LC, Wolf AM, Beanan MJ, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Kolonay JF, Madupu R, Lewis MR, Radune D, Fedorova NB, Scanlan D, Khouri H, Mulligan S, Carty HA, Cline RT, Aken SEV, Gill J, Scarselli M, Mora M, Iacobini ET, Brettoni C, Galli G, Mariani M, Vegni F, Maione D, Rinaudo D, Rappuoli R, Telford JL, Kasper DL, Grandi G, Fraser CM (2002) Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc NatI Acad Sci USA 99:12391–12396CrossRefGoogle Scholar
  88. Trastoy B, Lomino JV, Pierce BG, Carter LG, Gunther S, Giddens JP, Snyder GA, Weiss TM, Weng Z, Wang LX, Sundberg EJ (2014) Crystal structure of Streptococcus pyogenes EndoS, an immunomodulatory endoglycosidase specific for human IgG antibodies. Proc NatI Acad Sci USA 111:6714–6719CrossRefGoogle Scholar
  89. Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vega LA, Malke H, McIver KS (2016) Virulence-related transcriptional regulators of Streptococcus pyogenes. Ferretti JJ, ., Stevens DL, Fischetti VA Streptococcus pyogenes: basic biology to clinical manifestations [internet]. Oklahoma City: University of Oklahoma Health Sciences Center, 337–404Google Scholar
  91. Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, Simpson AJ, Buchanan JT, Chhatwal GS, Kotb M, Nizet V (2007) DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13:981–985CrossRefPubMedGoogle Scholar
  92. Wessels MR (2016a) Cell wall and surface molecules: capsule. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes : basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma City, pp 67–78Google Scholar
  93. Wessels MR (2016b) Pharyngitis and scarlet fever. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes : basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma City, pp 705–722Google Scholar
  94. Wilkening RV, Federle MJ (2017) Evolutionary constraints shaping Streptococcus pyogenes-host interactions. Trends Microbiol 25:562–572Google Scholar
  95. Yamaguchi M, Terao Y, Mori Y, Hamada S, Kawabata S (2008) PfbA, a novel plasmin- and fibronectin-binding protein of Streptococcus pneumoniae, contributes to fibronectin-dependent adhesion and antiphagocytosis. J Biol Chem 283:36272–36279CrossRefPubMedPubMedCentralGoogle Scholar
  96. Young C, Holder RC, Dubois L, Reid SD (2016) Streptococcus pyogenes biofilm. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes : basic biology to clinical manifestations [internet]. University of Oklahoma Health Sciences Center, Oklahoma City, pp 487–520Google Scholar
  97. Zhang Y, Masi AW, Barniak V, Mountzouros K, Hostetter MK, Green BA (2001) Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect Immun 69:3827–3836CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhu H, Liu M, Sumby P, Lei B (2009) The secreted esterase of group A Streptococcus is important for invasive skin infection and dissemination in mice. Infect Immun 77:5225–5232CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zingaretti C, Falugi F, Nardi-Dei V, Pietrocola G, Mariani M, Liberatori S, Gallotta M, Tontini M, Tani C, Speziale P, Grandi G, Margarit I (2010) Streptococcus pyogenes SpyCEP: a chemokine-inactivating protease with unique structural and biochemical features. FASEB J 24:2839–2848CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Douglas I. Johnson
    • 1
  1. 1.Department of Microbiology & Molecular GeneticsUniversity of VermontBurlingtonUSA

Personalised recommendations