Skip to main content

Problem of Bathymetric Big Data Interpolation for Inland Mobile Navigation System

Part of the Communications in Computer and Information Science book series (CCIS,volume 756)


Depth information is crucial in most navigational analysis and decision support implemented in existing inland navigation systems. Bathymetric data sets needs to be preprocessed and converted into Digital Terrain Model by interpolation methods to provide different vector layer for Electronic Navigational Chart. Data for inland waters needs to be precise and valid due to quickly alternating inland environment and much shallower areas than on marine waters. At the same time visual effect of created layers needs to be readable and easily interpreted by a navigator. In this paper authors analyze different interpolation method for DTM building from the perspective of accepted criteria. Created depth contours are the base of navigational analysis provided by mobile inland navigation system MOBINAV. The experiments used real inland data from bathymetric surveys conducted on waters of Szczecin area.


  • Bathymetric data
  • Interpolation method
  • Maritime information systems
  • Mobile systems

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Woźniak, M., Połap, D.: Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval. Neural Netw. 93, 45–56 (2017). doi:10.1016/j.neunet.2017.04.013. ISSN: 0893-6080, Elsevier

    CrossRef  Google Scholar 

  2. Woźniak, M.: Novel image correction method based on swarm intelligence approach. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 404–413. Springer, Cham (2016). doi:10.1007/978-3-319-46254-7_32. ISSN: 1865-0929

    CrossRef  Google Scholar 

  3. Woźniak, M., Połap, D., Napoli, C., Tramontana, E.: Graphic object feature extraction system based on cuckoo search algorithm. Expert Syst. Appl. 66, 20–31 (2016). doi:10.1016/j.eswa.2016.08.068. Elsevier

    CrossRef  Google Scholar 

  4. Wawrzyniak, N., Stateczny, A.: MSIS image postioning in port areas with the aid of comparative navigation methods. Polish Marit. Res. 243(1), 32–41 (2017). ISSN 1233-2585, Gdansk University of Technology

    Google Scholar 

  5. Kazimierski, W., Wlodarczyk-Sielicka, M.: Technology of spatial data geometrical simplification in maritime mobile information system for coastal waters. Polish Marit. Res. 23(3), 3–12 (2016). ISSN: 1233-2585, Gdansk University of Technology

    Google Scholar 

  6. Wawrzyniak, N., Hyla, T.: Application of geofencing technology for the purpose of spatial analyses in inland mobile navigation, geodetic congress (Geomatics), Baltic., Gdansk. IEEE (2016). doi:10.1109/BGC.Geomatics.2016.15

  7. Wlodarczyk-Sielicka, M., Stateczny, A.: Comparison of selected reduction methods of bathymetric data obtained by multibeam echosounder. In: 2016 Baltic Geodetic Congress (BGC Geomatics). doi:10.1109/BGC.Geomatics.2016.22

  8. Shimada, K., Aoki, S., Ohshima, K.I.: Creation of a gridded dataset for the southern ocean with a topographic constraint scheme. J. Atmos. Oceanic Technol. 34(3), 511–532 (2017). doi:10.1175/JTECH-D-16-0075.1

    CrossRef  Google Scholar 

  9. Amante, C.J., Eakins, B.W.: Accuracy of interpolated bathymetry in digital elevation models. J. Coastal Res. 76(Special Issue), 123–133 (2016). doi:10.2112/SI76-011. ISSN: 0749-0208

  10. Li, J., Heap, A.D.: A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, Canberra (2008)

    Google Scholar 

  11. Wlodarczyk-Sielicka, M.: Importance of neighborhood parameters during clustering of bathymetric data using neural network. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 441–452. Springer, Cham (2016). doi:10.1007/978-3-319-46254-7_35

    CrossRef  Google Scholar 

Download references


This research outcome has been achieved under the grant No 13/MN/IG/16 financed from a subsidy of the Ministry of Science and Higher Education for statutory activities.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marta Włodarczyk-Sielicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Włodarczyk-Sielicka, M., Wawrzyniak, N. (2017). Problem of Bathymetric Big Data Interpolation for Inland Mobile Navigation System. In: Damaševičius, R., Mikašytė, V. (eds) Information and Software Technologies. ICIST 2017. Communications in Computer and Information Science, vol 756. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67641-8

  • Online ISBN: 978-3-319-67642-5

  • eBook Packages: Computer ScienceComputer Science (R0)