Advertisement

Biometric Fusion for Palm-Vein-Based Recognition Systems

  • Emanuela Piciucco
  • Emanuele Maiorana
  • Patrizio Campisi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 766)

Abstract

In this paper we investigate the impact on performance of biometric fusion techniques for palm-vein-based recognition systems. In more detail, feature-level fusion, score-level fusion as well as decision-level fusion approaches are applied in a biometric system exploiting patterns of palm veins for user recognition, and both local binary pattern and local derivative pattern features for template generation. The obtained results show that a significant performance improvement can be achieved when the aforementioned feature extraction approaches are jointly taken into account, compared to the case where no biometric fusion is performed.

Keywords

Biometrics Palm vein recognition Biometric fusion 

References

  1. 1.
    Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)CrossRefGoogle Scholar
  2. 2.
    Mirmohamadsadeghi, L., Drygajlo, A.: Palm vein recognition with local binary patterns and local derivative patterns. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–6. IEEE (2011)Google Scholar
  3. 3.
    Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. Pattern Recogn. 1, 582–585 (1994)Google Scholar
  4. 4.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hong, L., Jain, A.K., Pankanti, S.: Can multibiometrics improve performance? In: Proceedings AutoID, vol. 99, pp. 59–64, Citeseer (1999)Google Scholar
  6. 6.
    Djerouni, A., Hamada, H., Loukil, A., Berrached, N.: Dorsal hand vein image contrast enhancement techniques. Int. J. Comput. Sci. 11(1), 137–142 (2014)Google Scholar
  7. 7.
    Yang, J., Shi, Y.: Towards finger-vein image restoration and enhancement for finger-vein recognition. Inf. Sci. 268, 33–52 (2014)CrossRefGoogle Scholar
  8. 8.
    Chen, L., Wang, J., Yang, S., He, H.: A finger vein image-based personal identification system with self-adaptive illuminance control. IEEE Trans. Instrum. Meas. 66(2), 294–304 (2017)CrossRefGoogle Scholar
  9. 9.
    Lee, Y.H., Khalil-Hani, M., Bakhteri, R.: FPGA-based finger vein biometric system with adaptive illumination for better image acquisition. In: 2012 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), pp. 107–112. IEEE (2012)Google Scholar
  10. 10.
    Wang, K., Zhang, Y., Yuan, Z., Zhuang, D.: Hand vein recognition based on multi supplemental features of multi-classifier fusion decision. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 1790–1795. IEEE (2006)Google Scholar
  11. 11.
    Wang, J.G., Yau, W.Y., Suwandy, A., Sung, E.: Person recognition by fusing palmprint and palm vein images based on “Laplacianpalm” representation. Pattern Recogn. 41(5), 1514–1527 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kauba, C., Piciucco, E., Maiorana, E., Campisi, P., Uhl, A.: Advanced Variants of Feature Level Fusion for Finger Vein Recognition. In: 2016 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–7. IEEE (2016)Google Scholar
  13. 13.
    Veluchamy, S., Karlmarx, L.R.: A system for multimodal biometric recognition based on finger knuckle and finger vein using feature level fusion and k-SVM classifier. IET Biometrics (2016)Google Scholar
  14. 14.
    Miura, N., Nagasaka, A., Miyatake, T.: Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach. Vis. Appl. 15(4), 194–203 (2004)CrossRefGoogle Scholar
  15. 15.
    Song, W., Kim, T., Kim, H.C., Choi, J.H., Kong, H.J., Lee, S.R.: A finger-vein verification system using mean curvature. Pattern Recogn. Lett. 32(11), 1541–1547 (2011)CrossRefGoogle Scholar
  16. 16.
    Kumar, A., Prathyusha, K.V.: Personal authentication using hand vein triangulation and knuckle shape. IEEE Trans. Image Process. 18(9), 2127–2136 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, L., Leedham, G., Cho, D.S.Y.: Minutiae feature analysis for infrared hand vein pattern biometrics. Pattern Recogn. 41(3), 920–929 (2008)CrossRefGoogle Scholar
  18. 18.
    Pascual, J.E.S., Uriarte-Antonio, J., Sanchez-Reillo, R., Lorenz, M.G.: Capturing hand or wrist vein images for biometric authentication using low-cost devices. In: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 318–322. IEEE (2010)Google Scholar
  19. 19.
    Hartung, D., Olsen, M.A., Xu, H., Busch, C.: Spectral minutiae for vein pattern recognition. In: 2011 International Joint Conference on IEEE Biometrics (IJCB), pp. 1–7 (2011)Google Scholar
  20. 20.
    Zhou, Y., Kumar, A.: Human identification using palm-vein images. IEEE Trans. Inf. Forensics Secur. 6(4), 1259–1274 (2011)CrossRefGoogle Scholar
  21. 21.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(11), 11–32 (1991)CrossRefGoogle Scholar
  22. 22.
    Han, W.Y., Lee, J.C.: Palm vein recognition using adaptive gabor filter. Expert Syst. Appl. 39(18), 13225–13234 (2012)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y.-B., Li, Q., You, J., Bhattacharya, P.: Palm vein extraction and matching for personal authentication. In: Qiu, G., Leung, C., Xue, X., Laurini, R. (eds.) VISUAL 2007. LNCS, vol. 4781, pp. 154–164. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76414-4_16 CrossRefGoogle Scholar
  24. 24.
    Chen, H., Lu, G., Wang, R.: A new palm vein matching method based on ICP algorithm. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 1207–1211. ACM (2009)Google Scholar
  25. 25.
    Ladoux, P.O., Rosenberger, C., Dorizzi, B.: Palm vein verification system based on SIFT matching. In: Proceedings of the 2009 International Conference on Biometrics (ICB). Advances in Biometrics, pp. 1290–1298 (2009)Google Scholar
  26. 26.
    Kang, W., Liu, Y., Wu, Q., Yue, X.: Contact-free palm-vein recognition based on local invariant features. PLoS ONE 9(5), e97548 (2014)CrossRefGoogle Scholar
  27. 27.
    Kang, W., Wu, Q.: Contactless palm vein recognition using a mutual foreground-based local binary pattern. IEEE Trans. Inf. Forensics Secur. 9(11), 1974–1985 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Emanuela Piciucco
    • 1
  • Emanuele Maiorana
    • 1
  • Patrizio Campisi
    • 1
  1. 1.Section of Applied Electronics, Department of EngineeringRome Tre UniversityRomeItaly

Personalised recommendations