From Big Data to Big Displays High-Performance Visualization at Blue Brain

  • Stefan Eilemann
  • Marwan Abdellah
  • Nicolas Antille
  • Ahmet Bilgili
  • Grigory Chevtchenko
  • Raphael Dumusc
  • Cyrille Favreau
  • Juan Hernando
  • Daniel Nachbaur
  • Pawel Podhajski
  • Jafet Villafranca
  • Felix Schürmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10524)

Abstract

Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions.

We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.

Notes

Acknowledgments

This publication was supported by the Blue Brain Project (BBP), the Swiss National Science Foundation under Grant 200020-129525, the King Abdullah University of Science and Technology (KAUST) through the KAUST-EPFL alliance for Neuro-Inspired High Performance Computing, the Spanish Ministry of Science and Innovation under grant (TIN2010-21289-C02-01/02), the Cajal Blue Brain Project, Hasler Stiftung Projekt Nr. 12097, and from the European Unions Horizon 2020 research and innovation programme under grant agreement No 720270 (HBP SGA1). We would also like to thank the people from GMRV at the Rey Juan Carlos University (URJC) for their collaboration under the Cajal Blue Brain and HBP projects.

References

  1. 1.
    Blue Brain Project. Tide: Tiled Interactive Display Environment (2016). https://github.com/BlueBrain/Tide
  2. 2.
    Blue Brain Project. Brayns: Interactive raytracing of neuroscience data (2017). https://github.com/BlueBrain/Brayns
  3. 3.
    DeFanti, T.A., Leigh, J., Renambot, L., Jeong, B., Verlo, A., Long, L., Brown, M., Sandin, D.J., Vishwanath, V., Liu, Q., Katz, M.J., Papadopoulos, P., Keefe, J.P., Hidley, G.R., Dawe, G.L., Kaufman, I., Glogowski, B., Doerr, K.-U., Singh, R., Girado, J., Schulze, J.P., Kuester, F., Smarr, L.: The optiportal, a scalable visualization, storage, and computing interface device for the optiputer. Future Gener. Comput. Syst. 25(2), 114–123 (2009)CrossRefGoogle Scholar
  4. 4.
    Doerr, K.-U., Kuester, F.: CGLX: a scalable, high-performance visualization framework for networked display environments. IEEE Trans. Vis. Comput. Graph. 17(2), 320–332 (2011)CrossRefGoogle Scholar
  5. 5.
    Eilemann, S., Makhinya, M., Pajarola, R.: Equalizer: a scalable parallel rendering framework. IEEE Trans. Vis. Comput. Graph. 15(3), 436–452 (2009)CrossRefGoogle Scholar
  6. 6.
    Febretti, A., Nishimoto, A., Mateevitsi, V., Renambot, L., Johnson, A., Leigh, J.: Omegalib: a multi-view application framework for hybrid reality display environments. In: 2014 IEEE Virtual Reality (VR), pp. 9–14, March 2014Google Scholar
  7. 7.
    Google, Inc., Cross Platform Serialization Library (2017). http://google.github.io/flatbuffers/
  8. 8.
    D.M.B.G.M. Google, Inc., The C++ Network Library Project (2017). http://cpp-netlib.org/
  9. 9.
    Guthe, S., Strasser, W.: Advanced techniques for high-quality multi-resolution volume rendering. Comput. Graph. 28(1), 51–58 (2004)CrossRefGoogle Scholar
  10. 10.
    Hernando, J.B., Biddiscombe, J., Bohara, B., Eilemann, S., Schürmann, F.: Practical parallel rendering of detailed neuron simulations. In: Proceedings of the 13th Eurographics Symposium on Parallel Graphics and Visualization, EGPGV, Aire-la-Ville, Switzerland, pp. 49–56. Eurographics Association (2013)Google Scholar
  11. 11.
    Johnson, A., Leigh, J., Morin, P., Van Keken, P.: GeoWall: stereoscopic visualization for geoscience research and education. IEEE Comput. Graph. Appl. 26(6), 10–14 (2006)CrossRefGoogle Scholar
  12. 12.
    Johnson, G.P., Abram, G.D., Westing, B., Navr’til, P., Gaither, K.: DisplayCluster: an interactive visualization environment for tiled displays. In: 2012 IEEE International Conference on Cluster Computing, pp. 239–247, September 2012Google Scholar
  13. 13.
    JSON Schema. JSON Schema (2017). http://json-schema.org/
  14. 14.
    Marrinan, T., Aurisano, J., Nishimoto, A., Bharadwaj, K., Mateevitsi, V., Renambot, L., Long, L., Johnson, A., Leigh, J.: SAGE2: a new approach for data intensive collaboration using scalable resolution shared displays. In: Collaborative Computing: Networking, Applications and Worksharing, pp. 177–186 (2014)Google Scholar
  15. 15.
    Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., Stich, M.: OptiX: a general purpose ray tracing engine. ACM Trans. Graph. 29, 66:1–66:13 (2010)CrossRefGoogle Scholar
  16. 16.
    Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Gnther, J., Navratil, P.: OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stefan Eilemann
    • 1
  • Marwan Abdellah
    • 1
  • Nicolas Antille
    • 1
  • Ahmet Bilgili
    • 1
  • Grigory Chevtchenko
    • 1
  • Raphael Dumusc
    • 1
  • Cyrille Favreau
    • 1
  • Juan Hernando
    • 1
  • Daniel Nachbaur
    • 1
  • Pawel Podhajski
    • 1
  • Jafet Villafranca
    • 1
  • Felix Schürmann
    • 1
  1. 1.Blue Brain ProjectEcole Polytechnique Federale de LausanneLausanneSwitzerland

Personalised recommendations