On the Scalability of Data Reduction Techniques in Current and Upcoming HPC Systems from an Application Perspective

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10524)


We implement and benchmark parallel I/O methods for the fully-manycore driven particle-in-cell code PIConGPU. Identifying throughput and overall I/O size as a major challenge for applications on today’s and future HPC systems, we present a scaling law characterizing performance bottlenecks in state-of-the-art approaches for data reduction. Consequently, we propose, implement and verify multi-threaded data-transformations for the I/O library ADIOS as a feasible way to trade underutilized host-side compute potential on heterogeneous systems for reduced I/O latency.


  1. 1.
    Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., Zheng, F.: Datastager: scalable data staging services for petascale applications. Clust. Comput. 13(3), 277–290 (2010). doi: 10.1007/s10586-010-0135-6 CrossRefGoogle Scholar
  2. 2.
    Alted, F.: blosc 1.11.4-dev, March 2017.
  3. 3.
    Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., Mauldin, J.: ParaView catalyst: enabling in situ data analysis and visualization. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ISAV2015, pp. 25–29. ACM (2015). doi: 10.1145/2828612.2828624
  4. 4.
    Bhimji, W., Bard, D., Romanus, M., Paul, D., Ovsyannikov, A., Friesen, B., Bryson, M., Correa, J., Lockwood, G.K., Tsulaia, V., et al.: Accelerating science with the NERSC burst buffer early user program. In: Proceedings of Cray Users Group (2016)Google Scholar
  5. 5.
    Birdsall, C., Langdon, A.: Plasma physics via computer simulation. The Adam Hilger series on plasma physics. McGraw-Hill, New York (1985). ISBN 9780070053717Google Scholar
  6. 6.
    Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic particle-in-cell code for a gpu cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010)CrossRefGoogle Scholar
  7. 7.
    Burtscher, M., Mukka, H., Yang, A., Hesaaraki, F.: Real-time synthesis of compression algorithms for scientific data. In: SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 264–275, November 2016. doi: 10.1109/SC.2016.22
  8. 8.
    Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A., Juckeland, G., Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F., Schramm, U., Schuchart, J., Widera, R.: Radiative signatures of the relativistic Kelvin-Helmholtz instability. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013, pp. 5:1–5:12. ACM (2013). doi: 10.1145/2503210.2504564
  9. 9.
    Collet, Y., Skibinski, P., Terrell, N., Purcell, S.: Contributors: Zstandard (zstd) 1.1.4 - fast real-time compression algorithm, March 2017.
  10. 10.
    Docan, C., Parashar, M., Klasky, S.: DataSpaces: an interaction and coordination framework or coupled simulation workflows. In: Proceedings of 19th International Symposium on High Performance and Distributed Computing (HPDC 2010), June 2010. doi: 10.1007/s10586-011-0162-y
  11. 11.
    Eckert, C.H.J.: Enhancements of the massively parallel memory allocator scatteralloc and its adaption to the general interface mallocMC, October 2014. doi: 10.5281/zenodo.34461
  12. 12.
    Grismayer, T., Alves, E., Fonseca, R., Silva, L.: dc-magnetic-field generation in unmagnetized shear flows. Phys. Rev. Lett. 111, 015005 (2013). doi: 10.1103/PhysRevLett.111.015005 CrossRefGoogle Scholar
  13. 13.
    Gunderson, S.H., Evlogimenos, A.: Contributors: Snappy 1.1.1 - a fast compressor/decompressor (2011).
  14. 14.
    Hockney, R., Eastwood, J.: Computer Simulation Using Particles. Taylor & Francis, Bristol (1988). ISBN: 9780852743928Google Scholar
  15. 15.
    Huebl, A., Lehe, R., Vay, J.L., Grote, D.P., Sbalzarini, I., Kuschel, S., Bussmann, M.: openPMD 1.0.0: a meta data standard for particle and mesh based data, November 2015. doi: 10.5281/zenodo.33624
  16. 16.
    Huebl, A., Schmitt, F., Widera, R., Grund, A., Schumann, C., Eckert, C., Bukva, A., Pausch, R.: libSplash: 1.6.0: SerialDataCollector filename API, October 2016. doi: 10.5281/zenodo.163609
  17. 17.
    Huebl, A., Widera, R., Grund, A., Pausch, R., Burau, H., Debus, A., Garten, M., Worpitz, B., Zenker, E., Winkler, F., Eckert, C., Tietze, S., Schneider, B., Knespel, M., Bussmann, M.: PIConGPU 0.2.4: Charge of bound electrons, openPMD axis range, manipulate by position, March 2017. doi: 10.5281/zenodo.346005
  18. 18.
    Huebl, A., et al.: Supplementary materials: On the scalability of data reduction techniques in current and upcoming HPC systems from an application perspective, April 2017. doi: 10.5281/zenodo.545780
  19. 19.
    Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 20(12), 2674–2683 (2014). doi: 10.1109/TVCG.2014.2346458 CrossRefGoogle Scholar
  20. 20.
    Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S., Tchoua, R., Lofstead, J., Oldfield, R., et al.: Hello ADIOS: the challenges and lessons of developing leadership class I/O frameworks. Concurr. Comput. Pract. Exp. 26(7), 1453–1473 (2014)CrossRefGoogle Scholar
  21. 21.
    Matthes, A., Huebl, A., Widera, R., Grottel, S., Gumhold, S., Bussmann, M.: In situ, steerable, hardware-independent and data-structure agnostic visualization with ISAAC. Supercomputing Frontiers and Innovations 3(4) (2016).
  22. 22.
    McLay, R., James, D., Liu, S., Cazes, J., Barth, W.: A user-friendly approach for tuning parallel file operations. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014, pp. 229–236. IEEE Press (2014). doi: 10.1109/SC.2014.24,
  23. 23.
    Meredith, J.S., Ahern, S., Pugmire, D., Sisneros, R.: EAVL: The extreme-scale analysis and visualization library. In: Childs, H., Kuhlen, T., Marton, F. (eds.) Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2012). doi: 10.2312/EGPGV/EGPGV12/021-030
  24. 24.
    Meuer, H.W., Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: November 2016 — TOP500 Supercomputer Sites, June 2016. Accessed 22 Mar 2017
  25. 25.
    Corporation, N.: NVIDIA IndeX 1.4.
  26. 26.
    Tao, D., Sheng, D., Chen, Z., Cappello, F.: Significantly improving lossy compression for scientific data sets based on multidimensional prediction and error-controlled quantization. In: IPDPS 2017: Proceedings of the 31th IEEE International Parallel and Distributed Processing Symposium, May 2017Google Scholar
  27. 27.
    The HDF Group: Hierarchical data format version 5 (C-API: 1.8.14) (2000–2017).
  28. 28.
    Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully featured visualization system. In: Kuhlen, T., Pajarola, R., Zhou, K. (eds.) Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2011). doi: 10.2312/EGPGV/EGPGV11/101-109
  29. 29.
    Zenker, E., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel, W.E., Bussmann, M.: Performance-portable many-core plasma simulations: porting PIConGPU to openpower and beyond. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 293–301. Springer, Cham (2016). doi: 10.1007/978-3-319-46079-6_21 CrossRefGoogle Scholar
  30. 30.
    Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel, W.E., Bussmann, M.: Alpaka-an abstraction library for parallel kernel acceleration. In: 2016 IEEE International on Parallel and Distributed Processing Symposium Workshops, pp. 631–640. IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Dresden – RossendorfDresdenGermany
  2. 2.Technische Universität DresdenDresdenGermany
  3. 3.NVIDIA ARC GmbHBerlinGermany
  4. 4.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations