Advertisement

PIOM-PX: A Framework for Modeling the I/O Behavior of Parallel Scientific Applications

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10524)

Abstract

Current parallel scientific applications generate a huge amount of data that must be managed efficiently for the HPC storage systems. However, the I/O performance depends on the application I/O behavior and the configuration of the underlying I/O system. To understand the I/O behavior in the software stack and its impact on the I/O operations defined in the application logic, we propose a design framework named PIOM-PX, which allows to define an I/O behavior model based on the I/O phases of HPC applications at POSIX-IO level. We validate our framework using the IOR benchmark for four I/O patterns and we analyze the I/O behavior of NAS BT-IO.

Notes

Acknowledgments

This research has been supported by the MINECO Spain under contract TIN2014-53172-P. The research position of the PhD student P. Gomez has been funded by a research collaboration agreement, with the “Fundación Escuelas Universitarias Gimbernat”. P. Gomez awarded with the SEBAP Research Mobility Grant to fund her three-month research stay at Leibniz Supercomputing Centre (LRZ, Germany).

The authors thankfully acknowledge the resources provided by the Centre of Supercomputing of Galicia (CESGA, Spain) and the Leibniz Supercomputing Centre (LRZ, Germany).

References

  1. 1.
    Byna, S., Chen, Y., Sun, X.-H., Thakur, R., Gropp, W.: Parallel I/O prefetching using MPI file caching and I/O signatures. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC 2008, Piscataway, NJ, USA, pp. 44:1–44:12. IEEE Press, 2008. http://dl.acm.org/citation.cfm?id=1413370.1413415
  2. 2.
    He, J., Bent, J., Torres, A., Grider, G., Gibson, G., Maltzahn, C., Sun, X.-H.: I/O acceleration with pattern detection. In: Proceedings of the 22nd International Symposium on High-Performance Parallel and Distributed Computing, pp. 25–36. ACM (2013)Google Scholar
  3. 3.
    Kluge, M., Knüpfer, A., Müller, M., Nagel, W.E.: Pattern matching and I/O replay for POSIX I/O in parallel programs. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 45–56. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03869-3_8 CrossRefGoogle Scholar
  4. 4.
    Méndez, S., Rexachs, D., Luque, E.: Modeling parallel scientific applications through their Input/Output phases. In: CLUSTER Workshops, vol. 12, pp. 7–15 (2012)Google Scholar
  5. 5.
    Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R., Ross, R.: Understanding and improving computational science storage access through continuous characterization. Trans. Storage 7(3), 8:1–8:26 (2011). doi: 10.1145/2027066.2027068 CrossRefGoogle Scholar
  6. 6.
    Behzad, B., Luu, H.V.T., Huchette, J., Byna, S., Prabhat, Aydt, R., Koziol, Q., Snir, M.: Taming parallel I/O complexity with auto-tuning. In: 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 1–12, November 2013Google Scholar
  7. 7.
    Behzad, B., Byna, S., Prabhat, Snir, M.: Pattern-driven parallel I/O tuning. In: Proceedings of the 10th Parallel Data Storage Workshop, PDSW 2015, pp. 43–48. ACM, New York (2015). doi: 10.1145/2834976.2834977
  8. 8.
    Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 Characterization of petascale I/O workloads. In: 2009 IEEE International Conference on Cluster Computing and Workshops, pp. 1–10. IEEE (2009)Google Scholar
  9. 9.
    Kunkel, J.M., Zimmer, M., Hübbe, N., Aguilera, A., Mickler, H., Wang, X., Chut, A., Bönisch, T., Lüttgau, J., Michel, R., Weging, J.: The SIOX architecture – coupling automatic monitoring and optimization of parallel I/O. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 245–260. Springer, Cham (2014). doi: 10.1007/978-3-319-07518-1_16 Google Scholar
  10. 10.
    Knüpfer, A., et al.: The Vampir performance analysis tool-set. In: Resch, M., Keller, R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Computing, pp. 139–155. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68564-7_9
  11. 11.
    Loewe, W., MacLarty, T., Morrone, C.: IOR Benchmark (2012). https://github.com/chaos/ior/blob/master/doc/USER_GUIDE. Accessed 14 May 2016
  12. 12.
    Wong, P., Wijngaart, R.F.V.D.: NAS parallel benchmarks i/o version 2.4, Computer Sciences Corporation, NASA Advanced Supercomputing (NAS) Division, Technical report (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Architecture and Operating Systems DepartmentUniversitat Autónoma de BarcelonaBellaterraSpain
  2. 2.High Performance Systems Division, Leibniz Supercomputing Centre (LRZ)Garching bei MünchenGermany

Personalised recommendations