Cold Atmospheric Plasma in Context of Surgical Site Infection

  • Rico Rutkowski
  • Matthias Schuster
  • Julia Unger
  • Isabella Metelmann
  • Tran Thi Trung Chien
Chapter

Abstract

Based on an increasing understanding of cellular and molecular effects clinical use of cold atmospheric shows a constantly and rapidly expanding application horizon. In particular, the field of antimicrobial efficacy can reference to in vitro and in vitro assured treatment successes, opening up interdisciplinary approaches and potentials. Despite all medical advances, surgical site infections are among the most common nosocomial infections worldwide. While the typical causal pathogen spectrum depends on the type of surgery several endogenous and exogenous risk factors have been identified. The chapter provides an overview of selected prevention measures and illustrates current approaches to integrate cold atmospheric plasma into existing anti SSI prevention and therapy concepts. While there is still a need for further evidence-based research the interim evaluation demonstrates the comprehensive potential of cold atmospheric plasma in the fight against this kind of healthcare-associated nosocomial infection including all medical and economic challenges.

Keywords

Cold atmospheric plasma Surgical site infection SSI Hyperspectral imaging HSI 

References

  1. 1.
    Moisan M, Barbeau J, Crevier M-C, Pelletier J, Philip N, Saoudi B. Plasma sterilization. Methods and mechanisms. Pure Appl Chem. 2002;74(3):349–58.CrossRefGoogle Scholar
  2. 2.
    Von Woedtke T, Kramer A, Weltmann KD. Plasma sterilization: what are the conditions to meet this claim? Plasma Process Polym. 2008;5(6):534–9.CrossRefGoogle Scholar
  3. 3.
    Bárdos L, Baránková H. Cold atmospheric plasma: sources, processes, and applications. Thin Solid Films. 2010;518(23):6705–13.CrossRefGoogle Scholar
  4. 4.
    Bekeschus S, Schmidt A, Weltmann K-D, von Woedtke T. The plasma jet kINPen—a powerful tool for wound healing. Clin Plasma Med. 2016;4(1):19–28.CrossRefGoogle Scholar
  5. 5.
    Conrads H, Schmidt M. Plasma generation and plasma sources. Plasma Sources Sci Technol. 2000;9(4):441.CrossRefGoogle Scholar
  6. 6.
    Daeschlein G, Scholz S, Ahmed R, Von Woedtke T, Haase H, Niggemeier M, et al. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect. 2012;81(3):177–83.CrossRefGoogle Scholar
  7. 7.
    Daeschlein G, Scholz S, Arnold A, von Podewils S, Haase H, Emmert S, et al. In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2012;9(4):380–9.CrossRefGoogle Scholar
  8. 8.
    Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Jünger M. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process Polym. 2010;7(3–4):224–30.CrossRefGoogle Scholar
  9. 9.
    Isbary G, Morfill G, Schmidt H, Georgi M, Ramrath K, Heinlin J, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163(1):78–82.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Isbary G, Stolz W, Shimizu T, Monetti R, Bunk W, Schmidt H-U, et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo. Clin Plasma Med. 2013;1(2):25–30.CrossRefGoogle Scholar
  11. 11.
    Tipa RS, Kroesen GM. Plasma-stimulated wound healing. IEEE Trans Plasma Sci. 2011;39(11):2978–9.CrossRefGoogle Scholar
  12. 12.
    Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288–303.CrossRefGoogle Scholar
  13. 13.
    Berríos-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for disease control and prevention guideline for the prevention of surgical site infection. JAMA Surg. 2017;152(8):784–91.CrossRefGoogle Scholar
  14. 14.
    Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.CrossRefGoogle Scholar
  15. 15.
    Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–208.CrossRefGoogle Scholar
  16. 16.
    Suetens C, Hopkins S, Kolman J, Högberg LD. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals: 2011–2012. Publications Office of the European Union; 2013.Google Scholar
  17. 17.
    Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.CrossRefGoogle Scholar
  18. 18.
    Jarvis WR. Selected aspects of the socioeconomic impact of nosocomial infections: morbidity, mortality, cost, and prevention. Infect Control Hosp Epidemiol. 1996;17(8):552–7.CrossRefGoogle Scholar
  19. 19.
    Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol. 1999;20(11):725–30.CrossRefGoogle Scholar
  20. 20.
    Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43.CrossRefGoogle Scholar
  21. 21.
    Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98.CrossRefGoogle Scholar
  22. 22.
    Maher RL, Hanlon J, Hajjar ER. Clinical consequences of polypharmacy in elderly. Expert Opin Drug Saf. 2014;13(1):57–65.CrossRefGoogle Scholar
  23. 23.
    Organization WH. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization; 2014.Google Scholar
  24. 24.
    Magill SS, Hellinger W, Cohen J, Kay R, Bailey C, Boland B, et al. Prevalence of healthcare-associated infections in acute care hospitals in Jacksonville, Florida. Infect Control Hosp Epidemiol. 2012;33(3):283–91.CrossRefGoogle Scholar
  25. 25.
    Broex E, Van Asselt A, Bruggeman C, Van Tiel F. Surgical site infections: how high are the costs? J Hosp Infect. 2009;72(3):193–201.CrossRefGoogle Scholar
  26. 26.
    Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol. 2011;32(2):101–14.CrossRefGoogle Scholar
  27. 27.
    Bowler P, Duerden B, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14(2):244–69.CrossRefGoogle Scholar
  28. 28.
    Singh R, Singla P, Chaudhary U. Surgical site infections: classification, risk factors, pathogenesis and preventive management. Int J Pharma Res Health Sci. 2014;2(3):203–14.Google Scholar
  29. 29.
    Geffers C, Baerwolff S, Schwab F, Gastmeier P. Incidence of healthcare-associated infections in high-risk neonates: results from the German surveillance system for very-low-birthweight infants. J Hosp Infect. 2008;68(3):214–21.CrossRefGoogle Scholar
  30. 30.
    Towfigh S, Cheadle WG, Lowry SF, Malangoni MA, Wilson SE. Significant reduction in incidence of wound contamination by skin flora through use of microbial sealant. Arch Surg. 2008;143(9):885–91.CrossRefGoogle Scholar
  31. 31.
    Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006;3(3):225–31.CrossRefGoogle Scholar
  32. 32.
    Neu HC. The crisis in antibiotic resistance. Science. 1992;257(5073):1064–74.CrossRefGoogle Scholar
  33. 33.
    Krizek TJ, Robson MC. Evolution of quantitative bacteriology in wound management. Am J Surg. 1975;130(5):579–84.CrossRefGoogle Scholar
  34. 34.
    Chen S, Anderson MV, Cheng WK, Wongworawat MD. Diabetes associated with increased surgical site infections in spinal arthrodesis. Clin Orthop Relat Res. 2009;467(7):1670–3.CrossRefGoogle Scholar
  35. 35.
    Gaynes RP, Culver DH, Horan TC, Edwards JR, Richards C, Tolson JS, et al. Surgical site infection (SSI) rates in the United States, 1992–1998: the National Nosocomial Infections Surveillance System basic SSI risk index. Clin Infect Dis. 2001;33(Supplement_2):S69–77.CrossRefGoogle Scholar
  36. 36.
    Harrington G, Russo P, Spelman D, Borrell S, Watson K, Barr W, et al. Surgical-site infection rates and risk factor analysis in coronary artery bypass graft surgery. Infect Control Hosp Epidemiol. 2004;25(6):472–6.CrossRefGoogle Scholar
  37. 37.
    Leong G, Wilson J, Charlett A. Duration of operation as a risk factor for surgical site infection: comparison of English and US data. J Hosp Infect. 2006;63(3):255–62.CrossRefGoogle Scholar
  38. 38.
    Malone DL, Genuit T, Tracy JK, Gannon C, Napolitano LM. Surgical site infections: reanalysis of risk factors. J Surg Res. 2002;103(1):89–95.CrossRefGoogle Scholar
  39. 39.
    ter Gunne AFP, Cohen DB. Incidence, prevalence, and analysis of risk factors for surgical site infection following adult spinal surgery. Spine. 2009;34(13):1422–8.CrossRefGoogle Scholar
  40. 40.
    Vilar-Compte D, de Iturbe IÁ, Martín-Onraet A, Pérez-Amador M, Sánchez-Hernández C, Volkow P. Hyperglycemia as a risk factor for surgical site infections in patients undergoing mastectomy. Am J Infect Control. 2008;36(3):192–8.CrossRefGoogle Scholar
  41. 41.
    Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet. 2001;358(9285):876–80.CrossRefGoogle Scholar
  42. 42.
    Hetem DJ, Bootsma MC, Bonten MJ. Prevention of surgical site infections: decontamination with mupirocin based on preoperative screening for Staphylococcus Aureus carriers or universal decontamination? Clin Infect Dis. 2015;62(5):631–6.CrossRefGoogle Scholar
  43. 43.
    Darouiche RO, Wall MJ Jr, Itani KM, Otterson MF, Webb AL, Carrick MM, et al. Chlorhexidine–alcohol versus povidone–iodine for surgical-site antisepsis. N Engl J Med. 2010;362(1):18–26.CrossRefGoogle Scholar
  44. 44.
    Tanner J, Norrie P, Melen K. Preoperative hair removal to reduce surgical site infection. London: The Cochrane Library; 2011.Google Scholar
  45. 45.
    Parienti JJ, Thibon P, Heller R, Le Roux Y, von Theobald P, Bensadoun H, et al. Hand-rubbing with an aqueous alcoholic solution vs traditional surgical hand-scrubbing and 30-day surgical site infection rates: a randomized equivalence study. JAMA. 2002;288(6):722–7.CrossRefGoogle Scholar
  46. 46.
    Obermeier A, Schneider J, Wehner S, Matl FD, Schieker M, von Eisenhart-Rothe R, et al. Novel high efficient coatings for anti-microbial surgical sutures using chlorhexidine in fatty acid slow-release carrier systems. PLoS One. 2014;9(7):e101426.CrossRefGoogle Scholar
  47. 47.
    Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med. 1996;334(19):1209–16.CrossRefGoogle Scholar
  48. 48.
    Buchleitner AM, Martínez-Alonso M, Hernández M, Solà I, Mauricio D. Perioperative glycaemic control for diabetic patients undergoing surgery. London: The Cochrane Library; 2012.Google Scholar
  49. 49.
    Meyhoff CS, Wetterslev J, Jorgensen LN, Henneberg SW, Høgdall C, Lundvall L, et al. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009;302(14):1543–50.CrossRefGoogle Scholar
  50. 50.
    Beldi G, Bisch-Knaden S, Banz V, Mühlemann K, Candinas D. Impact of intraoperative behavior on surgical site infections. Am J Surg. 2009;198(2):157–62.CrossRefGoogle Scholar
  51. 51.
    Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR, Committee HICPA. Guideline for prevention of surgical site infection, 1999. Am J Infect Control. 1999;27(2):97–134.CrossRefGoogle Scholar
  52. 52.
    Silva JM, de Oliveira AMR, Nogueira FAM, Vianna PMM, Pereira Filho MC, Dias LF, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit Care. 2013;17(6):R288.CrossRefGoogle Scholar
  53. 53.
    Masden D, Goldstein J, Endara M, Xu K, Steinberg J, Attinger C. Negative pressure wound therapy for at-risk surgical closures in patients with multiple comorbidities: a prospective randomized controlled study. Ann Surg. 2012;255(6):1043–7.CrossRefGoogle Scholar
  54. 54.
    Dumville JC, Gray TA, Walter CJ, Sharp CA, Page T, Macefield R, et al. Dressings for the prevention of surgical site infection. London: The Cochrane Library; 2016.Google Scholar
  55. 55.
    Ata A, Lee J, Bestle SL, Desemone J, Stain SC. Postoperative hyperglycemia and surgical site infection in general surgery patients. Arch Surg. 2010;145(9):858–64.CrossRefGoogle Scholar
  56. 56.
    Gyssens IC. Preventing postoperative infections: current treatment recommendations. Drugs. 1999;57(2):175–85.CrossRefGoogle Scholar
  57. 57.
    Richardson D, Fisher SE, Vaughan DE, Brown JS. Radial forearm flap donor-site complications and morbidity: a prospective study. Plast Reconstr Surg. 1997;99(1):109–15.CrossRefGoogle Scholar
  58. 58.
    Vu MM, Gutowski KA, Blough JT, Simmons CJ, Kim JY. Development of an individualized surgical risk calculator for abdominoplasty procedures. Plast Reconstr Surg. 2015;136(4S):95–6.CrossRefGoogle Scholar
  59. 59.
    Massenburg BB, Sanati-Mehrizy P, Jablonka EM, Taub PJ. Risk factors for prolonged length of stay in Abdominoplasty. Plast Reconstr Surg. 2015;136(4S):164–5.CrossRefGoogle Scholar
  60. 60.
    Infektionen NRfrSvn. Modul OP-KISS, Referenzdaten Berechnungszeitraum: Januar 2012 bis Dezember 2016. 2017.Google Scholar
  61. 61.
    U.S. Department of Health and Human Services CfDCaP. Meeting Minutes: Healthcare Infection Control Practices Advisory Committee (HICPAC). 2014.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rico Rutkowski
    • 1
  • Matthias Schuster
    • 1
  • Julia Unger
    • 2
  • Isabella Metelmann
    • 3
  • Tran Thi Trung Chien
    • 4
  1. 1.Department of Oral and Maxillofacial Surgery/Plastic SurgeryUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.Department of Obstetrics and GynecologyUniversity Medicine GreifswaldGreifswaldGermany
  3. 3.Department of Visceral, Vascular, Transplant and Thoracic SurgeryUniversity Medicine LeipzigLeipzigGermany
  4. 4.Vietnam Association of HIV/AIDS PreventionHanoiVietnam

Personalised recommendations