Skip to main content

Key Roles of Reactive Oxygen and Nitrogen Species

  • Chapter
  • First Online:
Comprehensive Clinical Plasma Medicine

Abstract

Reactive oxygen and nitrogen species (RONS) are formed in biologically significant quantities whenever cold atmospheric pressure plasma is established in or near air. RONS enter adjacent aqueous liquid solutions readily and can strongly affect cells and tissue, mainly through their influence on redox (‘oxidation-reduction’) biological processes. Understanding and controlling these interactions is essential to plasma biomedical interactions. Plasma biomedicine is therefore significantly based on the complex and multiple properties of free radicals and other reactive species in a biological context. This chapter briefly summarizes some of the key emerging concepts of RONS in plasma biomedicine as well as some of the classic references regarding the roles of RONS in aerobic biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herrmann J, Dick T. Redox biology on the rise. Biol Chem. 2012;393(9):999–1004.

    Article  CAS  Google Scholar 

  2. Trefil J, Morowitz H, Smith E. The origin of life: a case is made for the descent of electrons. Am Sci. 2009;97:206–13.

    Article  Google Scholar 

  3. Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45:263001.

    Article  Google Scholar 

  4. Lackmann J-W, Baldus S, Steinborn E, Edengeiser E, Kogelheide F, Langklotz S, Schneider S, Leichert LIO, Benedikt J, Awakowicz P, Bandow JE. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds. J Phys D Appl Phys. 2015;48:494003. https://doi.org/10.1088/0022-3727/48/49/494003.

    Article  CAS  Google Scholar 

  5. Barcellos-Hoff MH, Dix AT. Redox-mediated activation of latent transforming growth factor-beta-1. Mol Endocrinol. 1996;10:1077–83.

    CAS  PubMed  Google Scholar 

  6. Temme J, Bauer G. Low-dose gamma irradiation enhances superoxide anion production by nonirradiated cells through TGF-β1-dependent bystander signaling. Radiat Res. 2013;179:422–32.

    Article  CAS  Google Scholar 

  7. Kim YK, Kwon OJ, Park J-W. Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye. Biochimie. 2001;83:437–44.

    Article  CAS  Google Scholar 

  8. Bauer G, Graves DB. Mechanisms of selective antitumor action of cold atmospheric plasma-derived reactive oxygen and nitrogen species. Plasma Process Polym. 2016;13:1157–78. https://doi.org/10.1002/ppap.201600089.

    Article  CAS  Google Scholar 

  9. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine By Barry Halliwell and John M. C. Gutteridge. 5th ed. New York: Oxford University Press; 2015.

    Book  Google Scholar 

  10. Nespolo M. Book review: free radicals in biology and medicine by Barry Halliwell and John M. C. Gutteridge. 5th ed. New York: Oxford University Press; 2015.

    Google Scholar 

  11. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312.

    Article  CAS  Google Scholar 

  12. Halliwell B. Free radicals and antioxidants: updating a personal review. Nutr Rev. 2012;70(5):257–65.

    Article  Google Scholar 

  13. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47.

    Article  CAS  Google Scholar 

  14. Acworth I. The handbook of redox biochemistry. Chelmsford: ESA Biosciences; 2003.

    Google Scholar 

  15. Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1:244–57.

    Article  CAS  Google Scholar 

  16. Jones D, Sies H. The redox code. Antioxid Redox Signal. 2015;23(9):734–46.

    Article  CAS  Google Scholar 

  17. Holmstrom K, Finkel T. Cellular mechanisms and physiological consequences of redox- dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–21.

    Article  CAS  Google Scholar 

  18. Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol. 2015;3:35.

    Article  Google Scholar 

  19. Beckman J, Koppenol W. Nitric oxide, superoxide, peroxynitrite: the good, the bad and the ugly. Am J Physiol. 1996;271(5 Pt 1):C1424–37.

    Article  CAS  Google Scholar 

  20. Bauer G. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells. Redox Biol. 2015;6:353–71.

    Article  CAS  Google Scholar 

  21. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315.

    Article  CAS  Google Scholar 

  22. Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11:861–905.

    Article  CAS  Google Scholar 

  23. Torres MA. ROS in biotic interactions. Physiol Plant. 2010;138:414–29.

    Article  CAS  Google Scholar 

  24. Gill J, Piskounova E, Morrison SJ. Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol. 2016;81:163–75.

    Article  Google Scholar 

  25. Scheit K, Bauer G. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects. Carcinogenesis. 2015;36:400–11.

    Article  CAS  Google Scholar 

  26. Bauer G. Nitric oxide contributes to selective apoptosis induction in malignant cells through multiple reaction steps. Crit Rev Oncog. 2016;i21(5–6):365–98. DOI: 10.1615/CritRevOncog.2017021056.

    Article  Google Scholar 

  27. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241–52.

    Article  CAS  Google Scholar 

  28. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  CAS  Google Scholar 

  29. Schumaker P. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.

    Article  Google Scholar 

  30. Schumaker P. Reactive oxygen species in cancer: a dance with the devil. Cancer Cell. 2015;27(2):156–7.

    Article  Google Scholar 

  31. Gorrini C, Harris I, Mak T. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.

    Article  CAS  Google Scholar 

  32. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1(24):1–9.

    CAS  Google Scholar 

  33. Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 2003;22:5734–54.

    Article  CAS  Google Scholar 

  34. Ward JF. DNA damage as the cause of ionizing radiation-induced gene activation. Radiat Res. 1994;138:S85–8.

    Article  CAS  Google Scholar 

  35. Mavragani I, et al. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res. 2016;5:12–33.

    Article  Google Scholar 

  36. Bauer G. Signal amplification by tumor cells: clue to the understanding of the antitumor effects of cold atmospheric plasma and plasma-activated medium. IEEE Transactions on Radiation and Plasma Medical Sciences. 2018;2: 87–98. DOI: 10.1109.TRPMS.2017.2742000.

    Google Scholar 

  37. Bauer G. Targeting the protective catalase of tumor cells with cold atmospheric plasma-treated medium (PAM). Anticancer Agents Med Chem. 2017. DOI: 10.2174/1871520617666170801103708. (in press).

  38. Yan D, Xiao H, Zhu W, Nourmohammadi N, Zhang L, Bian K, Keidar M. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. J Phys D Appl Phys. 2017;50(5):055401.

    Article  Google Scholar 

  39. Lin A, Truong B, Pappas A, Kirifides L, Oubarri A, Chen S, Lin S, Dobrynin D, Fridman G, Fridman A, Sang N, Miller V. Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death in tumors and stimulation of macrophages. Plasma Process Polym. 2015;12:1392–9.

    Article  CAS  Google Scholar 

  40. Dolmans D, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature. 2003;3:1–8.

    Google Scholar 

  41. Riethmüller M, Burger N, Bauer G. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Redox Biol. 2015;6:157–68.

    Article  Google Scholar 

  42. Suschek C, Opländer C. The application of cold atmospheric plasma in medicine: the potential role of nitric oxide in plasma-induced effects. Clin Plasma Med. 2016;4:1–8.

    Article  Google Scholar 

  43. Wang P, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk J. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002;102(4):1091–134.

    Article  CAS  Google Scholar 

  44. Coulter J, et al. Nitric oxide—a novel therapeutic for cancer. Nitric Oxide. 2008;19:192–8.

    Article  CAS  Google Scholar 

  45. Kamgang-Youbi G, Herry JM, Meylheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naïtali M. Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett Appl Microbiol. 2009;48(1):13–8.

    Article  CAS  Google Scholar 

  46. Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol. 2014;23:015019.

    Article  Google Scholar 

  47. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:15.

    Article  Google Scholar 

  48. Graves DB. Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym. 2014;11:1120.

    Article  CAS  Google Scholar 

  49. Graves DB. Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clin Plasma Med. 2014;2:38.

    Article  Google Scholar 

  50. Adkins I, Fucikova J, Garg A, Agostinis P, Spisek R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology. 3(12):e968434. https://doi.org/10.4161/21624011.2014.968434.

    Article  Google Scholar 

  51. Calvet C, Mir L. The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer Metastasis Rev. 2016;35:165–77.

    Article  CAS  Google Scholar 

  52. Mizuno K, Yonetamari K, Shirakawa Y, Akiyama T, Ono R. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice. J Phys D Appl Phys. 2017;50:12LT01. https://doi.org/10.1088/1361-6463/aa5dbb.

    Article  CAS  Google Scholar 

  53. Di Mascio P, Bechara EJH, Medeiros MHG, Briviba K, Sies H. Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Lett. 1994;355:287–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Graves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graves, D.B., Bauer, G. (2018). Key Roles of Reactive Oxygen and Nitrogen Species. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Comprehensive Clinical Plasma Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-67627-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67627-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67626-5

  • Online ISBN: 978-3-319-67627-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics