Advertisement

PlasmaDerm® - Based on di_CAP Technology

  • Dirk Wandke
Chapter

Abstract

This chapter introduces the air-driven dielectric barrier discharge (DBD) based on the di_CAP technology-PlasmaDerm®. This plasma source received approval as medical device class IIa from the supervisory boards in Germany. The direct plasma generally is generated between two electrodes under atmospheric pressure. At least one of the two electrodes is completely covered by an electrical insulating material. The other electrode is usually the body surface to be treated. PlasmaDerm® activates the wound healing of the body and germ reducing reliably. The PlasmaDerm® product family is suitable for mobile treatment and care, since the devices are small, light and simple operate. Primary indications for PlasmaDerm® therapy are (chronic) wound-healing disorders such as acute wounds, venous and arterial ulcers, pressure sores, and the diabetic foot syndrome. More details and contact information is available on the company website: www.cinogy.de.

References

  1. 1.
    Zenker M. Argon plasma coagulation. GMS Krankenhygiene Interdiszip. 2008;3(1.) Doc15. Published online 2008/11/03.Google Scholar
  2. 2.
    Daeschlein G, Scholz S, Ahmed R, von Woedtke T, Haase H, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Juenger M. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect. 2012;81(3):177–83.CrossRefGoogle Scholar
  3. 3.
    Daeschlein G, Scholz S, Ahmed R, Majumdar A, von Woedtke T, Haase H, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Jünger M. Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. JDDG. 2012;10(7):509–15.PubMedGoogle Scholar
  4. 4.
    Rajasekaran P, Opländer C, Hoffmeister D, Bibinov N, Suschek CV, Wandke D, Awakowicz P. Characterization of dielectric barrier discharge (DBD) on mouse and histological evaluation of the plasma-treated tissue. Plasma Process Polym. 2011;8:246–55.CrossRefGoogle Scholar
  5. 5.
    Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Jünger M. Antibacterial activity of atmospheric pressure plasma jet (APPJ) against relevant wound pathogens in vitro on simulated wound environment. Plasma Process Polym. 2009;6:224–30.Google Scholar
  6. 6.
    Daeschlein G, Scholz S, Arnold A, von Podewils S, Haase H, Emmert S, von Woedtke T, Weltmann KD, Jünger M. In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2012;9:380–9.CrossRefGoogle Scholar
  7. 7.
    Daeschlein G, Scholz S, von Podewils S, Arnold A, Klare I, Haase H, Emmert S, von Woedtke T, Jünger M. Cold plasma—a new antimicrobial treatment tool against multidrug resistant pathogens. In: Mendez-Vilas A, editor. Worldwide research efforts in the fighting against microbial pathogens—from basic research to technological developments. Boca Raton: Brown Walker Press; 2013. p. 110–3.Google Scholar
  8. 8.
    Daeschlein G, Napp M, von Podewils S, Lutze S, Emmert S, Lange A, Klare I, Haase H, Gümbel D, von Woedtke T, Jünger M. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2014;11:175–83.CrossRefGoogle Scholar
  9. 9.
    Brehmer F, Haenssle HA, Daeschlein G, Ahmed R, Pfeiffer S, Görlitz A, Simon D, Schön MP, Wandke D, Emmert S. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). JEADV. 2016;29:148–55.Google Scholar
  10. 10.
    Emmert S, Brehmer F, Hänßle H, Helmke A, Mertens N, Ahmed R, Simon D, Wandke W, Maus-Friedrichs W, Daeschlein G, Schön MP, Viöl W. Atmospheric pressure plasma in dermatology: Ulcus treatment and much more. Clin Plasma Med. 2013; Epub 2013 Jan 2.  https://doi.org/10.1016/j.cpme.2012.11.002.
  11. 11.
    Kisch T, Schleusser S, Helmke MKL, Wenzel ET, Hasemann B, Mailaender P, Kraemer R. The repetitive use of non-thermal dielectric barrier discharge plasma boosts cutaneous microcirculatory effects. Microvasc Res. 2016;106:8–13.CrossRefGoogle Scholar
  12. 12.
    Kisch T, Helmke A, Schleusser S, Song J, Liodaki E, Stang FH, Mailaender P, Kraemer R. Improvement of cutaneous microcirculation by cold atmospheric plasma (CAP): results of a controlled, prospective cohort study. Microvasc Res. 2016;104:55–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CINOGY GmbH Plasma Technology for HealthDuderstadtGermany

Personalised recommendations