Relevant Plasma Parameters for Certification

  • Torsten Gerling
  • Andreas Helmke
  • Klaus-Dieter Weltmann
Chapter

Abstract

The focus of this chapter is to reveal the components that make cold atmospheric plasma (CAP) an important tool for medical research. In order to breach the step from research to hospital, a decisive understanding of not just their biomedical efficiency but also associated potential risks when applying CAP is required. The overview of a whole cocktail of six components created within the plasma and the revealed effects they have are summarized in this chapter. A selection of components like ozone or ultra-violet radiation is discussed and a control to inhibit unwanted effects is derived. In order to be able to characterize the CAP from the point of its basic physical properties towards the biomedical relevant output of components, the present state of diagnostics is reviewed. It is revealed, that the present limitations in understanding the optimal composition of the plasma “cocktail” lies in the determination of the electrical field, the relevant ions and finally in the clear separation of each component. Finally, the consideration of synergy effects is required to finalize and formulate a “dose” for clinical applications.

Keywords

Plasma technology Cold atmospheric plasma (CAP) Plasma medicine Medical product UV radiation Electrical current flow High-voltage Temperature Plasma parameters Medical safety Plasma diagnostics 

Notes

Acknowledgement

The authors Gerling and Weltmann thank the internal and external cooperation partners of the projects “Campus PlasmaMed I and II”, funded by the German Federal Ministry of Education and Research (13 N9779 and 13 N11188); "Plasmamedizinische Forschung – neue pharmazeutische und medizinische Anwendungsfelder", funded by the Ministry for Research, Development and Culture of the State of Mecklenburg-Vorpommern and the European Union by the European Social Fund (AU 11 038, ESF/IV-BM-B35-0010/13); "Entwicklung eines neuartigen Wundbehandlungssystems auf Basis von Plasmatechnologien und dem Einsatz flächiger textiler Plasmaquellen für den mobilen und stationären Einsatz – PlasmaWundTex", funded by Zentrales Innovationsprogramm Mittelstand of the German Federal Ministry for Economic Affairs and Energy (KF2046509AK3); “Erweiterung der medizinischen Anwendungsmöglichkeiten kalter Atmosphärendruckplasmajets (MEDKAP)”, funded by the German Ministry of Education; “Plasmamedizin—Anwendungsorientierte Grundlagenforschung zu physikalischem Plasma in der Medizin” funded by the Ministry of Education, Science and Culture of the State of Mecklenburg-Vorpommern (grant: AU 15 001).

The author Helmke thanks all cooperation partners of the research group “BioLiP”, funded by the German Federal Ministry of Education and Research (BMBF, grant no. 13 N9089), the associated partners in the project “PlaStraKomb”, funded by the BMBF (grant no. PNT51501), the partners of the research group “Campus PlasmaMed II”, funded by the BMBF (grant no. 13 N11190), as well as the partners of the joint research project “WuPlaKo”, funded by the BMBF (grant no. 13GW0041D) and “KonchaWu”, funded by the Ministry of economics of the State of Niedersachsen and the European Regional Development Fund ERDF (grant no. ZW 3-85006987).

References

  1. 1.
    von Woedtke T, Reuter S, Masur K, et al. Plasmas for medicine. Phys Rep. 2013;530:291–320.Google Scholar
  2. 2.
    Grundmann-Kollmann M, Ludwig R, Zollner TM, et al. Narrowband UVB and cream psoralen-UVA combination therapy for plaque-type psoriasis. J Am Acad Dermatol. 2004;50:734–9.PubMedGoogle Scholar
  3. 3.
    Krutmann J, Czech W, Diepgen T, et al. High-dose UVA1 therapy in the treatment of patients with atopic dermatitis. J Am Acad Dermatol. 1992;26:225–30.PubMedGoogle Scholar
  4. 4.
    Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.PubMedGoogle Scholar
  5. 5.
    Martinez-Sanchez G, Al-Dalain SM, Menendez S, et al. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol. 2005;523:151–61.PubMedGoogle Scholar
  6. 6.
    Re L, Mawsouf MN, Menendez S, et al. Ozone therapy: clinical and basic evidence of its therapeutic potential. Arch Med Res. 2008;39:17–26.PubMedGoogle Scholar
  7. 7.
    Maffiuletti NA, Minetto MA, Farina D, et al. Electrical stimulation for neuromuscular testing and training: state-of-the art and unresolved issues. Eur J Appl Physiol. 2011;111:2391–7.PubMedGoogle Scholar
  8. 8.
    Kara M, Oezcakar L, Goekcay D, et al. Quantification of the effects of transcutaneous electrical nerve stimulation with functional magnetic resonance imaging: a double-blind randomized placebo-controlled study. Arch Phys Med Rehabil. 2010;91:1160–5.PubMedGoogle Scholar
  9. 9.
    Ehlbeck J, Schnabel U, Polak M, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys. 2011;44:13002.Google Scholar
  10. 10.
    Daeschlein G, Scholz S, von Woedtke T, et al. In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Trans Plasma Sci. 2011;39:815–21.Google Scholar
  11. 11.
    Daeschlein G, Scholz S, Arnold A, et al. In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2012;9:380–9.Google Scholar
  12. 12.
    Helmke A, Gruenig P, Fritz U-M, et al. Low temperature plasma—a prospective microbicidal tool. Recent Pat Antiinfect Drug Discov. 2012;7:223–30.PubMedGoogle Scholar
  13. 13.
    Cooper M, Fridman G, Staack D, et al. Decontamination of surfaces from extremophile organisms using nonthermal atmospheric-pressure plasmas. IEEE Trans Plasma Sci. 2009;37:866–71.Google Scholar
  14. 14.
    Joshi SG, Paff M, Friedman G, et al. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am J Infect Control. 2010;38:293–301.PubMedGoogle Scholar
  15. 15.
    Zimmermann JL, Shimizu T, Schmidt H-U, et al. Test for bacterial resistance build-up against plasma treatment. New J Phys. 2012;14:73037.Google Scholar
  16. 16.
    Kalghatgi S, Friedman G, Fridman A, et al. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann Biomed Eng. 2010;38:748–57.PubMedGoogle Scholar
  17. 17.
    Kalghatgi S, Kelly CM, Cerchar E, et al. Effects of non-thermal plasma on mammalian cells. PLoS One. 2011;6:e16270.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kalghatgi S, Fridman A, Azizkhan-Clifford J, et al. DNA damage in mammalian cells by non-thermal atmospheric pressure microsecond pulsed dielectric barrier discharge plasma is not mediated by ozone. Plasma Process Polym. 2012;9:726–32.Google Scholar
  19. 19.
    Balzer J, Heuer K, Demir E, et al. Non-Thermal Dielectric Barrier Discharge (DBD) effects on proliferation and differentiation of human fibroblasts are primary mediated by hydrogen peroxide. PLoS One. 2015;10:1–18.Google Scholar
  20. 20.
    Helmke A, Hoffmeister D, Mertens N, et al. The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J Phys. 2009;11:115025.Google Scholar
  21. 21.
    Oehmigen K, Haehnel M, Brandenburg R, et al. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym. 2010;7:250–7.Google Scholar
  22. 22.
    Fridman G, Peddinghaus M, Balasubramanian M, et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26:425–42.Google Scholar
  23. 23.
    Kalghatgi SU, Fridman G, Cooper M, et al. Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans Plasma Sci. 2007;35:1559–66.Google Scholar
  24. 24.
    Isbary G, Morfill G, Schmidt H, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Isbary G, Heinlin J, Shimizu T, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167:404–10.PubMedGoogle Scholar
  26. 26.
    Heinlin J, Isbary G, Stolz W, et al. A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. J Eur Acad Dermatol Venereol. 2013;27:324–31.PubMedGoogle Scholar
  27. 27.
    Isbary G, Stolz W, Shimizu T, et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo. J Clin Plasma Med. 2013;1:25–30.Google Scholar
  28. 28.
    Heinlin J, Zimmermann JL, Zeman F, et al. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen. 2013;21:800–7.PubMedGoogle Scholar
  29. 29.
    Fluhr JW, Sassning S, Lademann O, et al. In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp Dermatol. 2012;21:130–4.PubMedGoogle Scholar
  30. 30.
    Daeschlein G, Scholz S, Ahmed R, et al. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect. 2012;81:177–83.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Metelmann H-R, von Woedtke T, Bussiahn R, et al. Experimental recovery of CO2-laser skin lesions by plasma stimulation. Am J Cosmet Surg. 2012;29:52–6.Google Scholar
  32. 32.
    Metelmann H-R, Vu TT, Do HT, et al. Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: a clinical long term observation. Clin Plasma Med. 2013;1:30–5.Google Scholar
  33. 33.
    Klebes M, Ulrich C, Kluschke F, et al. Combined antibacterial effects of tissue-tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. J Biophotonics. 2015;8:382–91.PubMedGoogle Scholar
  34. 34.
    Bekeschus S, Schmidt A, Weltmann K-D, et al. The plasma jet kINPen—a powerful tool for wound healing. Clin Plasma Med. 2016;4:19–28.Google Scholar
  35. 35.
    Klebes M, Lademann J, Philipp S, et al. Effects of tissue-tolerable plasma on psoriasis vulgaris treatment compared to conventional local treatment: a pilot study. Clin Plasma Med. 2014;2:22–7.Google Scholar
  36. 36.
    Brehmer F, Haenssle HA, Daeschlein G, et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29:148–55.PubMedGoogle Scholar
  37. 37.
    Heuer K, Hoffmanns MA, Demir E, et al. The topical use of non-thermal dielectric barrier discharge (DBD): Nitric oxide related effects on human skin. Nitric Oxide. 2015;44:52–60.PubMedGoogle Scholar
  38. 38.
    Kisch T, Helmke A, Schleusser S, et al. Improvement of cutaneous microcirculation by cold atmospheric plasma (CAP): results of a controlled, prospective cohort study. Microvasc Res. 2016;104:55–62.PubMedGoogle Scholar
  39. 39.
    Kisch T, Schleusser S, Helmke A, et al. The repetitive use of non-thermal dielectric barrier discharge plasma boosts cutaneous microcirculatory effects. Microvasc Res. 2016;106:8–13.PubMedGoogle Scholar
  40. 40.
    Mann MS, Tiede R, Gavenis K, et al. Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin Plasma Med. 2016;4:35–45.Google Scholar
  41. 41.
    Winter J, Brandenburg R, Weltmann K-D. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. 2015;24:64001.Google Scholar
  42. 42.
    DIN EN 60601-1-6:2010: Medical electrical equipment—Part 1–6: General requirements for basic safety and essential performance—Collateral standard: Usability (IEC 60601-1-6:2010); German version EN 60601-1-6:2010, Beuth-Verlag.Google Scholar
  43. 43.
    Thomsen S, Pearce JA. Termal damage and rate processes in biological tissues. In: Welch AJ, van Gemert MJC, editors. Optical-thermal response of laser-irradiated tissue. 2nd ed. Dordrecht: Springer; 2011. p. 487–549.Google Scholar
  44. 44.
    Weltmann K-D, Kindel E, Brandenburg R, et al. Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contrib Plasma Physics. 2009;49:631–40.Google Scholar
  45. 45.
    Tuemmel S, Mertens N, Wang J, et al. Low temperature plasma treatment of living human cells. Plasma Process Polym. 2007;4:465–9.Google Scholar
  46. 46.
    Kuchenbecker M, Bibinov N, Kaemling A, et al. Characterization of DBD plasma source for biomedical applications. J Phys D Appl Phys. 2009;42:45212.Google Scholar
  47. 47.
    Bussiahn R, Brandenburg R, Gerling T, et al. The hairline plasma: an intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications. Appl Phys Lett. 2010;96:143701.Google Scholar
  48. 48.
    Helmke A, Franck M, Wandke D, et al. Tempo-spatially resolved ozone characteristics during single-electrode dielectric barrier discharge (SE-DBD) operation against metal and porcine skin surfaces. Plasma Med. 2014;4:67–77.Google Scholar
  49. 49.
    Shimizu T, Steffes B, Pompl R, et al. Characterization of microwave plasma torch for decontamination. Plasma Process Polym. 2008;5:577–82.Google Scholar
  50. 50.
    ISO 21348:2007(en). Space environment (natural and artificial)—process for determining solar irradiances. Definitions of Solar Irradiance Spectral Categories.Google Scholar
  51. 51.
    Sinha RP, Haeder DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1:225–36.PubMedGoogle Scholar
  52. 52.
    The International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180nm and 400nm (Incoherent optical radiation). Health Phys. 2004;87:171–86.Google Scholar
  53. 53.
    Kreuter A, Hyun J, Stuecker M, et al. A randomized controlled study of low-dose UVA1, medium-dose UVA1, and narrowband UVB phototherapy in the treatment of localized scleroderma. J Am Acad Dermatol. 2006;54:440–7.PubMedGoogle Scholar
  54. 54.
    Masoud N, Martus K, Becker K. VUV emission from a cylindrical dielectric barrier discharge in Ar and in Ar/N 2 and Ar/air mixtures. J Phys D Appl Phys. 2005;38:1674.Google Scholar
  55. 55.
    Foest R, Bindemann T, Brandenburg R, et al. On the vacuum ultraviolet radiation of a miniaturized non-thermal atmospheric pressure plasma jet. Plasma Process Polym. 2007;4:460–4.Google Scholar
  56. 56.
    Yoshino K, Parkinson WH, Ito K, et al. Absolute absorption cross-section measurements of Schumann-Runge continuum of O2 at 90 and 295 K. J Mol Spectrosc. 2005;229:238–43.Google Scholar
  57. 57.
    Chan WF, Cooper G, Sodhi RNS, et al. Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11-200 eV). Chem Phys. 1993;170:81–97.Google Scholar
  58. 58.
    Kim JH, Choi YH, Hwang YS. Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas. Phys Plasma. 2006;13:93501.Google Scholar
  59. 59.
    Nikiforov AY, Leys C, Gonzalez MA, et al. Electron density measurement in atmospheric pressure plasma jets: Stark broadening of hydrogenated and non-hydrogenated lines. Plasma Sources Sci Technol. 2015;24:34001.Google Scholar
  60. 60.
    Bibinov N, Halfmann H, Awakowicz P, et al. Relative and absolute intensity calibrations of a modern broadband echelle spectrometer. Meas Sci Technol. 2007;18:1327–37.Google Scholar
  61. 61.
    Helmke A, Mahmoodzada M, Wandke D, et al. Impact of electrode design, supply voltage and interelectrode distance on safety aspects of a medical DBD plasma source. Contrib Plasma Phys. 2013;53:623–38.Google Scholar
  62. 62.
    DIN EN ISO 12100: Safety of machinery—general principles for design—risk assessment and risk reduction (ISO 12100:2010); German version EN ISO 12100:2011, Beuth-Verlag.Google Scholar
  63. 63.
    Lamb AB, Hoover CR, inventors. Gas-detector. United States patent 1321062. 4 Nov 1919.Google Scholar
  64. 64.
    Lackmann JW, Schneider S, Edengeiser E, et al. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface. 2013;10:20130591.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Brandenburg R, Lange H, von Woedtke T, et al. Antimicrobial effects of UV and VUV radiation of nonthermal plasma jets. IEEE Trans Plasma Sci. 2009;37:877–83.Google Scholar
  66. 66.
    Winter J, Tresp H, Hammer MU, et al. Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells. J Phys D Appl Phys. 2014;47:285401.Google Scholar
  67. 67.
    Bruggeman P, Brandenburg R. Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. J Phys D Appl Phys. 2013;46:464001.Google Scholar
  68. 68.
    Hofmann S, van Gessel AFH, Verreycken T, et al. Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets. Plasma Sources Sci Technol. 2011;20:65010.Google Scholar
  69. 69.
    Gerling T, Brandenburg R, Wilke C, et al. Power measurement for an atmospheric pressure plasma jet at different frequencies: distribution in the core plasma and the effluent. Eur Phys J Appl Phys. 2017;78:10801.Google Scholar
  70. 70.
    Qian M, Ren C, Wang D, et al. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes. J Appl Phys. 2010;107:63303–1.Google Scholar
  71. 71.
    Nikiforov A, Xiong Q, Britun N, et al. Absolute concentration of OH radicals in atmospheric pressure glow discharges with a liquid electrode measured by laser-induced fluorescence spectroscopy. Appl Phys Express. 2011;4:26102–1.Google Scholar
  72. 72.
    Janda M, Martišovitš V, Hensel K, et al. Measurement of the electron density in Transient Spark discharge. Plasma Sources Sci Technol. 2014;23:65016.Google Scholar
  73. 73.
    Zhu X-M, Pu Y-K, Balcon N, et al. Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy. J Phys D Appl Phys. 2009;42:142003.Google Scholar
  74. 74.
    Huebner S, Sousa JS, Puech V, et al. Electron properties in an atmospheric helium plasma jet determined by Thomson scattering. J Phys D Appl Phys. 2014;47:432001.Google Scholar
  75. 75.
    Karakas E, Akman MA, Laroussi M. The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements. Plasma Sources Sci Technol. 2012;21:34016.Google Scholar
  76. 76.
    Gerling T, Nastuta AV, Bussiahn R, et al. Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane discharge with oxygen admixtures. Plasma Sources Sci Technol. 2012;21:34012.Google Scholar
  77. 77.
    Naidis GV. Modelling of streamer propagation in atmospheric-pressure helium plasma jets. J Phys D Appl Phys. 2010;43:402001.Google Scholar
  78. 78.
    Lee HW, Park GY, Seo YS, et al. Modelling of atmospheric pressure plasmas for biomedical applications. J Phys D Appl Phys. 2011;44:53001.Google Scholar
  79. 79.
    Breden D, Miki K, Raja LL. Computational study of cold atmospheric nanosecond pulsed helium plasma jet in air. Appl Phys Lett. 2011;99:111501.Google Scholar
  80. 80.
    Boeuf J-P, Yang LL, Pitchford LC. Dynamics of a guided streamer (“plasma bullet”) in a helium jet in air at atmospheric pressure. J Phys D Appl Phys. 2013;46:15201.Google Scholar
  81. 81.
    Norberg SA, Tian W, Johnsen E, et al. Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid. J Phys D Appl Phys. 2014;47:475203.Google Scholar
  82. 82.
    Schmidt-Bleker A, Norberg SA, Winter J, et al. Propagation mechanisms of guided streamers in plasma jets: the influence of electronegativity of the surrounding gas. Plasma Sources Sci Technol. 2015;24:35022.Google Scholar
  83. 83.
    Xu XP, Kushner MJ. Multiple microdischarge dynamics in dielectric barrier discharges. J Appl Phys. 1998;84:4153–60.Google Scholar
  84. 84.
    Schmidt-Bleker A, Winter J, Bösel A, et al. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device. Plasma Sources Sci Technol. 2016;25:15005.Google Scholar
  85. 85.
    Norberg SA, Johnsen E, Kushner MJ. Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air. Plasma Sources Sci Technol. 2015;24:35026.Google Scholar
  86. 86.
    Wen Y, Fu-Cheng L, Chao-Feng S, et al. Two-dimensional numerical study of an atmospheric pressure helium plasma jet with dual-power electrode. Chin Phys B. 2015;24:65203.Google Scholar
  87. 87.
    Oh J-S, Aranda-Gonzalvo Y, Bradley JW. Time-resolved mass spectroscopic studies of an atmospheric-pressure helium microplasma jet. J Phys D Appl Phys. 2011;44:365202.Google Scholar
  88. 88.
    Dünnbier M, Schmidt-Bleker A, Winter J, et al. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry. J Phys D Appl Phys. 2013;46:435203.Google Scholar
  89. 89.
    Gerling T, Bussiahn R, Wilke C, et al. Time resolved ion density determination by electrical current measurements in an atmospheric pressure argon plasma. Europhys Lett. 2014;105:25001.Google Scholar
  90. 90.
    Stollenwerk L, Laven JG, Purwins H-G. Spatially resolved surface-charge measurement in a planar dielectric-barrier discharge system. Phys Rev Lett. 2007;98:255001.PubMedGoogle Scholar
  91. 91.
    Bogaczyk M, Nemschokmichal S, Wild R, et al. Development of barrier discharges: operation modes and structure formation. Contrib Plasma Phys. 2012;52:847–55.Google Scholar
  92. 92.
    Gerling T, Wild R, Nastuta AV, et al. Correlation of phase resolved current, emission and surface charge measurements in an atmospheric pressure helium jet. Eur Phys J Appl Phys. 2015;71:20808.Google Scholar
  93. 93.
    Wild R, Gerling T, Bussiahn R, et al. Phase-resolved measurement of electric charge deposited by an atmospheric pressure plasma jet on a dielectric surface. J Phys D Appl Phys. 2014;47:42001.Google Scholar
  94. 94.
    Szili EJ, Bradley JW, Short RD. A tissue model to study the plasma delivery of reactive oxygen species. J Phys D Appl Phys. 2014;47:152002.Google Scholar
  95. 95.
    Kozlov KV, Wagner H-E, Brandenburg R, et al. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure. J Phys D Appl Phys. 2001;34:3164–76.Google Scholar
  96. 96.
    Grosch H, Hoder T, Weltmann K-D, et al. Spatio-temporal development of microdischarges in a surface barrier discharge arrangement in air at atmospheric pressure. Eur Phys J D. 2010;60:547–53.Google Scholar
  97. 97.
    Gerling T, Hoder T, Bussiahn R, et al. On the spatio-temporal dynamics of a self-pulsed nanosecond transient spark discharge: a spectroscopic and electrical analysis. Plasma Sources Sci Technol. 2013;22:65012.Google Scholar
  98. 98.
    Hoder T, Černák M, Paillol J, et al. High-resolution measurements of the electric field at the streamer arrival to the cathode: A unification of the streamer-initiated gas-breakdown mechanism. Phys Rev E. 2012;86:55401.Google Scholar
  99. 99.
    Tschiersch R, Bogaczyk M, Wagner H-E. Systematic investigation of the barrier discharge operation in helium, nitrogen, and mixtures: discharge development, formation and decay of surface charges. J Phys D Appl Phys. 2014;47:365204.Google Scholar
  100. 100.
    Lu X, Naidis GV, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep. 2016;630:1–84.Google Scholar
  101. 101.
    Bussiahn R, Kindel E, Lange H, et al. Spatially and temporally resolved measurements of argon metastable atoms in the effluent of a cold atmospheric pressure plasma jet. J Phys D Appl Phys. 2010;43:165201.Google Scholar
  102. 102.
    Sands BL, Leiweke RJ, Ganguly BN. Spatiotemporally resolved Ar (1s 5 ) metastable measurements in a streamer-like He/Ar atmospheric pressure plasma jet. J Phys D Appl Phys. 2010;43:282001.Google Scholar
  103. 103.
    Darny T, Pouvesle J-M, Puech V, et al. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Sci Technol. 2017;26:45008.Google Scholar
  104. 104.
    Niermann B, Böke M, Sadeghi N, et al. Space resolved density measurements of argon and helium metastable atoms in radio-frequency generated He-Ar micro-plasmas. Eur Phys J D. 2010;60:489–95.Google Scholar
  105. 105.
    Pipa AV, Reuter S, Foest R, et al. Controlling the NO production of an atmospheric pressure plasma jet. J Phys D Appl Phys. 2012;45:85201.Google Scholar
  106. 106.
    Srivastava N, Wang C. Determination of OH radicals in an atmospheric pressure helium microwave plasma jet. IEEE Trans Plasma Sci. 2011;39:918–24.Google Scholar
  107. 107.
    Reuter S, Winter J, Iseni S, et al. Detection of ozone in a MHz argon plasma bullet jet. Plasma Sources Sci Technol. 2012;21:34015.Google Scholar
  108. 108.
    Bruggeman P, Cunge G, Sadeghi N. Absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure He–H2O RF glow discharges. Plasma Sources Sci Technol. 2012;21:35019.Google Scholar
  109. 109.
    Verreycken T, Mensink R, van der Horst R, et al. Absolute OH density measurements in the effluent of a cold atmospheric-pressure Ar–H2O RF plasma jet in air. Plasma Sources Sci Technol. 2013;22:55014.Google Scholar
  110. 110.
    Iseni S, Zhang S, van Gessel AFH, et al. Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate. N J Phys. 2014;16:123011.Google Scholar
  111. 111.
    Rozhdestvenski DS. Anomale Dispersion in Natriumdampf. Ann Phys. 1912;39:307.Google Scholar
  112. 112.
    Gerling T. Beiträge zur optischen und elektrischen Charakterisierung des dynamischen Verhaltens von Plasmaspezies in Atmosphärendruck-Plasmen. 2014.Google Scholar
  113. 113.
    Knake N, Niemi K, Reuter S, et al. Absolute atomic oxygen density profiles in the discharge core of a microscale atmospheric pressure plasma jet. Appl Phys Lett. 2008;93:131503.Google Scholar
  114. 114.
    Reuter S, Winter J, Schmidt-Bleker A, et al. Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion. Plasma Sources Sci Technol. 2012;21:24005.Google Scholar
  115. 115.
    Voráč J, Dvořák P, Procházka V, et al. Measurement of hydroxyl radical (OH) concentration in an argon RF plasma jet by laser-induced fluorescence. Plasma Sources Sci Technol. 2013;22:25016.Google Scholar
  116. 116.
    Tresp H, Hammer MU, Winter J, et al. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J Phys D Appl Phys. 2013;46:435401.Google Scholar
  117. 117.
    The National Institute of Standards and Technology: Atomic Spectra Database Version 5.Google Scholar
  118. 118.
    Fantz U. Basics of plasma spectroscopy. Plasma Sources Sci Technol. 2006;15:S137.Google Scholar
  119. 119.
    Schäfer J, Foest R, Ohl A, et al. Miniaturized non-thermal atmospheric pressure plasma jet - characterization of self-organized regimes. Plasma Phys Control Fusion. 2009;51:124045.Google Scholar
  120. 120.
    Schäfer J, Foest R, Reuter S, et al. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma. Rev Sci Instrum. 2012;83:103506.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Gaens WV, Bogaerts A. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J Phys D Appl Phys. 2013;46:275201.Google Scholar
  122. 122.
    Barnett A, Weaver JC. Electroporation: A unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes. Bioelectrochem Bioenerg. 1991;25:163–82.Google Scholar
  123. 123.
    Beebe SJ, Fox PM, Rec LJ, et al. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J. 2003;17:1493–5.PubMedGoogle Scholar
  124. 124.
    Gaborit G, Jarrige P, Lecoche F, et al. Single shot and vectorial characterization of intense electric field in various environments with pigtailed Electrooptic probe. IEEE Trans Plasma Sci. 2014;42:1265–73.Google Scholar
  125. 125.
    Bogaczyk M, Wild R, Stollenwerk L, et al. Surface charge accumulation and discharge development in diffuse and filamentary barrier discharges operating in He, N2 and mixtures. J Phys D Appl Phys. 2012;45:465202.Google Scholar
  126. 126.
    Wild R, Benduhn J, Stollenwerk L. Surface charge transport and decay in dielectric barrier discharges. J Phys D Appl Phys. 2014;47:435204.Google Scholar
  127. 127.
    Sobota A, Guaitella O, Garcia-Caurel E. Experimentally obtained values of electric field of an atmospheric pressure plasma jet impinging on a dielectric surface. J Phys D Appl Phys. 2013;46:372001.Google Scholar
  128. 128.
    Sretenović GB, Krstić IB, Kovačević VV, et al. Spatio-temporally resolved electric field measurements in helium plasma jet. J Phys D Appl Phys. 2014;47:102001.Google Scholar
  129. 129.
    Xiong Z, Kushner MJ. Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target. Plasma Sources Sci Technol. 2012;21:34001.Google Scholar
  130. 130.
    DIN-SPEC 91315: General requirements for medical plasma sources. Beuth-Verlag; 2014.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Torsten Gerling
    • 1
  • Andreas Helmke
    • 2
    • 3
  • Klaus-Dieter Weltmann
    • 1
  1. 1.Leibniz Institute for Plasma Science and Technology e.VGreifswaldGermany
  2. 2.Fraunhofer Institute for Surface Engineering and Thin Films IST, Application Center for Plasma und PhotonicsGöttingenGermany
  3. 3.Faculty of Natural Sciences and TechnologyHAWK University of Applied Sciences and ArtsGöttingenGermany

Personalised recommendations