Perspectives in Ophthalmology

  • Emilio Martines
  • Helena Reitberger
  • Catherine Chow
  • Paola Brun
  • Matteo Zuin
  • Thomas A. Fuchsluger
Chapter

Abstract

Integrity of the ocular surface and transparency of the cornea as “window of the eye,” necessary to achieve a good visual acuity, are essential of every persons’ quality of life and for their ability to professionally and socially interact in the community. The homeostasis at the ocular surface is constantly endangered both by microbes and by intrinsic factors, such as metabolic disturbances (e.g., diabetes) reducing the wound healing capability. In addition, the popular use of contact lenses poses a considerable risk for microbial infection due to poor hygiene or overwearing. Infections at the ocular surface clinically present as infections of the conjunctiva (=conjunctivitis) or of the cornea (=keratitis). In advanced stages, corneal defects can result with loss of stromal tissue and potential risk of perforation of the eye. Current treatments involve topical or i.v. use of e.g., antibiotics or of antimycotics and require hospitalization in severe cases. However, some microbes can be therapy-refractive or even -resistent leading to worsening of the clinical situation. Plasma medicine and its desinfective properties open new ways for treatment of microbial infections of the cornea. This can lead to shortening of treatment time, faster recovery for the patient and to an overall reduction of costs for health systems.

Keywords

Cornea Ocular surface Contact lens Microbes Keratitis Plasma medicine Cold plasma 

References

  1. 1.
    Neumann M, Sjostrand J. Central microbial keratitis in a Swedish city population. Acta Ophthalmol. 1993;71:160–4.CrossRefGoogle Scholar
  2. 2.
    Thomas PA, Geraldine P. Infectious keratitis. Curr Opin Infect Dis. 2007;20:129–41.CrossRefGoogle Scholar
  3. 3.
    Zimmerman AB, Nixon AD, Rueff EM. Contact lens associated microbial keratitis: practical considerations for the optometrist. Clin Optom. 2016;8:1–12.Google Scholar
  4. 4.
    Grundmann H, Aires de Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 2006;368:874–85.CrossRefGoogle Scholar
  5. 5.
    Leonardi A, Deligianni V, Martines E, Zuin M, Cavazzana R, Serianni G, Spolaore M. Plasma device for treating living tissues, PCT patent n. WO 2009/043925. Published on 9 Apr 2009.Google Scholar
  6. 6.
    Martines E, Zuin M, Cavazzana R, Gazza E, Serianni G, Spagnolo S, Spolaore M, Leonardi A, Deligianni V, Brun P, Aragona M, Brun P. A new plasma source for sterilization of living tissues. New J Phys. 2009;11:115014.CrossRefGoogle Scholar
  7. 7.
    O'Connor N, Cahill O, Daniels S, Galvin S, Humphreys H. Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? J Hosp Infect. 2014;88:59–65.CrossRefGoogle Scholar
  8. 8.
    Cahill OJ, Claro T, O'Connor N, Cafolla AA, Stevens NT, Daniels S, Humphreys H. Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Appl Environ Microbiol. 2014;80:2004–10.CrossRefGoogle Scholar
  9. 9.
    Aboubakr HA, Williams P, Gangal U, Youssef MM, El-Sohaimy SA, Bruggeman PJ, Goyal SM. Virucidal effect of cold atmospheric gaseous plasma on feline calicivirus, a surrogate for human norovirus. Appl Environ Microbiol. 2015;81:3612–22.CrossRefGoogle Scholar
  10. 10.
    Brun P, Brun P, Vono M, Venier P, Tarricone E, Deligianni V, Martines E, Zuin M, Spagnolo S, Cavazzana R, Cardin R, Castagliuolo I, Valerio AL, Leonardi A. Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PLoS One. 2012;7:e33245.CrossRefGoogle Scholar
  11. 11.
    Heaselgrave W, Shama G, Andrew PW, Kong MG. Inactivation of Acanthamoeba spp. and other ocular pathogens by application of cold atmospheric gas plasma. Appl Environ Microbiol. 2016;82:3143–8.CrossRefGoogle Scholar
  12. 12.
    Alekseev O, Donovan K, Limonnik V, Azizkhan-Clifford J. Nonthermal dielectric barrier discharge (DBD) plasma suppresses herpes simplex virus type 1 (HSV-1) replication in corneal epithelium. Transl Vis Sci Technol. 2014;3:2.CrossRefGoogle Scholar
  13. 13.
    Volotskova O, Dubrovsky L, Keidar M, Bukrinsky M. Cold atmospheric plasma inhibits HIV-1 replication in macrophages by targeting both the virus and the cells. PLoS One. 2016;11:e0165322.CrossRefGoogle Scholar
  14. 14.
    Hasse S, Duong Tran T, Hahn O, Kindler S, Metelmann HR, von Woedtke T, Masur K. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma. Clin Exp Dermatol. 2016;41:202–9.CrossRefGoogle Scholar
  15. 15.
    Wende K, Straßenburg S, Haertel B, Harms M, Holtz S, Barton A, Masur K, von Woedtke T, Lindequist U. Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biol Int. 2014;38:412–25.CrossRefGoogle Scholar
  16. 16.
    Brun P, Pathak S, Castagliuolo I, Palù G, Brun P, Zuin M, Cavazzana R, Martines E. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One. 2014;9:e104397.CrossRefGoogle Scholar
  17. 17.
    Rosani U, Tarricone E, Venier P, Brun P, Deligianni V, Zuin M, Martines E, Leonardi A, Brun P. Atmospheric-pressure cold plasma induces transcriptional changes in ex vivo human corneas. PLoS One. 2015;10:e0133173.CrossRefGoogle Scholar
  18. 18.
    Al-Adhami BH, Nichols RAB, Kusel JR, O’Grady J, Smith HV. Detection of UV-induced thymine dimmers in individual Cryptosporidium parvum and Cryptosporidium hominis oocysts by immunofluorescence microscopy. Appl Environ Microbiol. 2007;73:947–55.CrossRefGoogle Scholar
  19. 19.
    Martines E, Brun P, Brun P, Cavazzana R, Deligianni V, Leonardi A, Tarricon E, Zuin M. Towards a plasma treatment of corneal infections. Clin Plasma Med. 2013;1:17–24.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emilio Martines
    • 1
  • Helena Reitberger
    • 2
  • Catherine Chow
    • 3
  • Paola Brun
    • 4
  • Matteo Zuin
    • 1
  • Thomas A. Fuchsluger
    • 2
  1. 1.Istituto Gas Ionizzati del CNR and Consorzio RFX PadovaPadovaItaly
  2. 2.Department of OphthalmologyFriedrich-Alexander-University Erlangen-Nuremberg, University Hospital ErlangenErlangenGermany
  3. 3.St. Joseph-Stift HospitalBremenGermany
  4. 4.Unit of Microbiology, Department of Molecular MedicineUniversity of PadovaPadovaItaly

Personalised recommendations