Perspective in Pigmentation Disorders

  • Manish Adhikari
  • Anser Ali
  • Nagendra Kumar Kaushik
  • Eun Ha ChoiEmail author


Melanin is primarily designated as animal cutaneous pigment and considered separately from similar fungal or bacterial pigments. Pigmentation disorders comprise various kinds of diverse conditions that are usually categorized by altered melanocyte embryological development, melanin concentration, defects in melanogenesis, flaws in biogenesis of melanosomes, problems in Melanosomes transport and its survival or both, and result in altered pigmentation of the skin. Many of the disorders by pigmentation are extremely common like melasma and vitiligo whereas some are very rare. Many gene mutations related to pigmentation disorder already described, but the function of their final product protein and their implication in melanogenesis are only partially understood, brings new clues in the understanding of the pigmentation process. In recent years, several reports have demonstrated the wide range of nonthermal atmospheric pressure plasma applications on melanogenesis. This chapter serves as a comprehensive update on the current understanding of the pigmentation production, disease associated with interaction of skin pigmentation with UV rays, hypermelanogenesis and hypomelanogenesis, as well as treatments for this common, yet therapeutically challenging conditions using surgical, hormonal, immunological, antioxidative and cold atmospheric plasma treatment compounds.


Melanogenesis; Melanin Pigmentation disorders Cold plasma 


Conflict of Interest

The authors declare no conflict of interest.


This work was supported by a grant from the National Research Foundation of Korea (NRF), which is funded by the Korean Government, Ministry of Science, ICT and Future Planning (MSIP), (NRF-2016K1A4A3914113) and Kwangwoon University in 2017.


  1. 1.
    Deng L, Xu S. Adaptation of human skin color in various populations. Hereditas. 2017;15:155–61.Google Scholar
  2. 2.
    Kim HJ, Yong HI, Park S, Kim K, Kim TH, Choe W, Jo C. Effect of atmospheric pressure dielectric barrier discharge plasma on the biological activity of naringin. Food Chem. 2014;160:241–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Kobayashi T, Vieira WD, Potterf B, Sakai C, Imokawa G, Hearing VJ. Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. J Cell Sci. 1995;108:2301–9.PubMedGoogle Scholar
  4. 4.
    Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000a;13:60–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Steingrímsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004;38:365–411.PubMedCrossRefGoogle Scholar
  6. 6.
    Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 1998;142:827–35.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem. 1997;272:503–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Yavuzer U, Keenan E, Lowings P. The Microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene. 1995;10:123–34.PubMedGoogle Scholar
  9. 9.
    Verschoore M, Gupta S, Sharma VK, Ortonne JP. Determination of melanin and haemoglobin in the skin of idiopathic cutaneous hyperchromia of the orbital region (ICHOR): a study of Indian patients. J Cutan Aesthet Surg. 2012;5:176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Solano F. Melanins: skin pigments and much more—types, structural models, biological functions, and formation routes. New J Sci. 2014;498276:1–28.CrossRefGoogle Scholar
  11. 11.
    Nishimura EK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011;24:401–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Ortonne JP, et al. PUVA-induced repigmentation of vitiligo: scanning electron microscopy of hair follicles. J Invest Dermatol. 1980;74:40–2.PubMedCrossRefGoogle Scholar
  13. 13.
    Staricco RG. Amelanotic melanocytes in the outer sheath of the human hair follicle and their role in the repigmentation of regenerated epidermis. Ann NY Acad Sci. 1963;100:239–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Paul M, Jennifer R. Radiative relaxation quantum yields for synthetic eumelanin. Photochem Photobiol. 2007;79:211–6.CrossRefGoogle Scholar
  15. 15.
    Vandamme M. Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym. 2010;7:264–73.CrossRefGoogle Scholar
  16. 16.
    Fridman A. Plasma chemistry. CambridgeCambridge University Press 2008.
  17. 17.
    Graves DB. Low temperature plasma biomedicine: a tutorial review. Phys Plasmas. 2014;21:080901.CrossRefGoogle Scholar
  18. 18.
    Lee A, Lin A, Shah K, Singh H, Miller V, Rao SG. Optimization of non-thermal plasma treatment in an in vivo model organism. PLoS One. 2016;11:e0160676.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fathollah S, Mipour S, Mansouri P, Dehpour AR, Ghoranneviss M, Rahimi N, Naraghi ZS, Chalangari R, Chalangari KM. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Sci Rep. 2016;6:19144.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Keidar M. Plasma for cancer treatment. Plasma Sources Sci Technol. 2015;24:33001.CrossRefGoogle Scholar
  21. 21.
    Sladek REJ. Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci. 2004;32:2002–5.CrossRefGoogle Scholar
  22. 22.
    Ali A, Ashraf Z, Kumar N, Rafiq M, Jabeen F, Park JH, Choi KH, Lee S, Seo SY, Choi EH, Attri P. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity. Sci Rep. 2016;6:21779.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rees JL. The melanocortin 1 receptor (MC1R): more than just red hair. Pigment Cell Res. 2000;13:135–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Slominski A, Paus R. Are l-tyrosine and l-dopa hormone-like bioregulators. J Theor Biol. 1990;143:123–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Tadokoro R, Takahashi Y. Intercellular transfer of organelles during body pigmentation. Curr Opin Genet Dev. 2017;45:132–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang Y, Viennet C, Robin S, Berthon JY, He L, Humbert P. Precise role of dermal fibroblasts on melanocyte pigmentation. J Dermatol Sci. 2017;S0923-1811(17):30082–8.Google Scholar
  27. 27.
    Diniz GB, Bittencourt JC. The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci. 2017;11:32.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J. 1991;5:2902–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Lerner AB, Fitzpatrick TB. Biochemistry of melanin formation. Physiol Rev. 1950;30:1–126.CrossRefGoogle Scholar
  30. 30.
    Mason HS. The chemistry of melanin. III. Mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase. J Biol Chem. 1948;172:83–98.PubMedGoogle Scholar
  31. 31.
    Pawelek JM, Korner AM. The biosynthesis of mammalian melanin. Am Sci. 1982;70:136–45.PubMedGoogle Scholar
  32. 32.
    Prota G. Melanins and melanogenesis. New York: Academic; 1992.Google Scholar
  33. 33.
    Prota G. The chemistry of melanins and melanogenesis. Fortsch Chem Organ Nat. 1995;64:93–148.Google Scholar
  34. 34.
    Hearing V. The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res. 2000;13:23–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Matsunaga J, Sinha D, Solano F, Santis C, Wistow G, Hearing V. Macrophage migration inhibitory factor (MIF)—its role in catecholamine metabolism. Cell Mol Biol. 1999;45:1035–40.PubMedGoogle Scholar
  36. 36.
    Rosengren E, Bucala R, Aman P, Jacobsson L, Odh G, Metz CN, Rorsman H. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction. Mol Med. 1996;2:143–9.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Schallreuter KU, Lemke KR, Hill HZ, Wood JM. Thioredoxin reductase induction coincides with melanin biosynthesis in brown and black guinea pigs and in murine melanoma cells. J Invest Dermatol. 1994;103:820–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Slominski A, Paus R. Towards defining receptors for l-tyrosine and l-DOPA. Mol Cell Endocrinol. 1994;99:C7–C11.PubMedCrossRefGoogle Scholar
  39. 39.
    Slominski A, Pruski D. L-DOPA binding sites in rodent melanoma cells. Biochem Biophys Acta. 1992;1139:324–8.PubMedGoogle Scholar
  40. 40.
    Slominski A. POMC gene expression in hamster and mouse melanoma cells. FEBS Lett. 1991;291:165–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445:843–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Herraiz C, Garcia-Borron JC, Jiménez-Cervantes C, Olivares C. MC1R signaling. Intracellular partners and pathophysiological implications. Biochim Biophys Acta. 2017;1863(10 Pt A):2448–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Haddadeen C, Lai C, Cho SY, Healy E. Variants of the melanocortin-1 receptor: do they matter clinically? Exp Dermatol. 2015;24:5–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Kollias N. The spectroscopy of human melanin pigmentation in melanin: its role in human photoprotection. Valdenmar; 1995. pp. 31–8.Google Scholar
  45. 45.
    de Gruijl FR. UV adaptation: pigmentation and protection against overexposure. Exp Dermatol. 2017;26:557–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Chedekel MR. Photochemistry and photobiology of epidermal melanins. Photochem Photobiol. 1982;35:881–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Mitra D, Luo X, Morgan A. An ultraviolet-radiation independent pathway to melanoma carcinogenesis in the red hair/fair skin. Nature. 2012;491:449–53.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hill HZ. The function of melanin or six blind people examine an elephant. BioEssays. 1992;14:49–56.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang Z, Dillon J, Gaillard ER. Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem Photobiol. 2006;82:474–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Sarangarajan R, Apte SP. Melanization and phagocytosis: implications for age related macular degeneration. Mol Vis. 2005;11:482–90.PubMedGoogle Scholar
  51. 51.
    Meyer zum Gottesberge AM. Physiology and pathophysiology of inner ear melanin. Pigment Cell Res. 1988;1:238–49.PubMedCrossRefGoogle Scholar
  52. 52.
    Gonzalez-Santoyo I, Cordoba-Aguilar A. Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl. 2012;142:1–16.CrossRefGoogle Scholar
  53. 53.
    Nappi AJ, Vass E. Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res. 1993;6:117–26.PubMedCrossRefGoogle Scholar
  54. 54.
    Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Abbas M, Amico FD, Morresi L, et al. Structural, electrical, electronic and optical properties of melanin films. Eur Phys J E Soft Matter. 2009;28:285–91.PubMedCrossRefGoogle Scholar
  56. 56.
    Bothma JP, de Boor J, Divakar U, Schwenn PE, Meredith P. Device-quality electrically conducting melanin thin films. Adv Mater. 2008;20:3539–42.CrossRefGoogle Scholar
  57. 57.
    Apte M, Girme G, Bankar A, RaviKumar A, Zinjarde S. 3,4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotech. 2013;11:1–9.CrossRefGoogle Scholar
  58. 58.
    Robins AH. Biological perspectives on human pigmentation. Cambridge, NY: Cambridge University Press; 1991.CrossRefGoogle Scholar
  59. 59.
    Lees FC, Byard PJ. Skin colorimetry in Belize. I. Conversion formulae. Am J Phys Anthropol. 1978;48:515–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Lees FC, Byard PJ, Relethford JH. New conversion formulae for light-skinned populations using photovolt and E.E.L. reflectometers. Am J Phys Anthropol. 1979;51:403–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Hunter RS. Photoelectric tristimulus colorimetry with three filters. Circular of the National Bureau of Standards C429. J Opt Soc Am. 1942;32:509–38.CrossRefGoogle Scholar
  62. 62.
    Stamatas GN, Zmudzka BZ, Kollias N, Beer JZ. Non-invasive measurements of skin pigmentation in situ. Pigment Cell Res. 2004;17:618–26.PubMedCrossRefGoogle Scholar
  63. 63.
    Diffey BL, Oliver RJ, Farr PM. A portable instrument for quantifying erythema induced by ultraviolet radiation. Br J Dermatol. 1984;3:663–72.CrossRefGoogle Scholar
  64. 64.
    Kollias N, Sayer RM, Zeise L, Chedekel MR. Photoprotection by melanin. J Photochem Photobiol B Biol. 1991;9:135–60.CrossRefGoogle Scholar
  65. 65.
    Shriver MD, Parra EJ. Comparison of narrow-band reflectance spectroscopy and tristimulus colorimetry for measurements of skin and hair color in persons of different biological ancestry. Am J Phys Anthrop. 2000;112:17–27.PubMedCrossRefGoogle Scholar
  66. 66.
    Kollias N, Baqer A. Spectroscopic characteristics of human melanin in vivo. J Invest Dermatol. 1985;85:38–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Kollias N, Baqer AH. Absorption mechanism of human melanin in the visible, 400-720 nm. J Invest Dermatol. 1987;89:384–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Chaplin G. Geographic distribution of environmental factors influencing human skin coloration. Am J Phys Anthropol. 2004;125:292–302.PubMedCrossRefGoogle Scholar
  69. 69.
    Jablonski NG, Chaplin G. The evolution of human skin coloration. J Hum Evol. 2000;39:57–106.PubMedCrossRefGoogle Scholar
  70. 70.
    Mason HS, Ingram DJE, Allen B. The free radical property of melanins. Arch Biochem Biophys. 1960;86:225–30.PubMedCrossRefGoogle Scholar
  71. 71.
    Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006;19:572–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Fligge M, Solanki SK. The solar spectral irradiance since 1700. Geophys Res Lett. 2000;27:2157–60.CrossRefGoogle Scholar
  73. 73.
    Kane RP. Mismatch between variations of solar indices, stratospheric ozone and UV-B observed at ground. J Atmos Sol Terr Phys. 2002;64:2063–74.CrossRefGoogle Scholar
  74. 74.
    Kimlin MG. The climatology of vitamin D producing ultraviolet radiation over the United States. J Steroid Biochem Mol Biol. 2004;89-90:479–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67:373–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Webb AR. Who, what, where and when–influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol. 2006;92:17–25.PubMedCrossRefGoogle Scholar
  77. 77.
    Goor Y, Rubinstein A. Vitamin D levels in dark skinned people. Israel J Med Sci. 1995;31:237–8.PubMedGoogle Scholar
  78. 78.
    Holick MF. Photosynthesis of vitamin D in the skin: effect of environmental and life-style variables. Fed Proc. 1987;46:1876–82.PubMedGoogle Scholar
  79. 79.
    Skull SA, Ngeow JY, Biggs BA, Street A, Ebeling PR. Vitamin D deficiency is common and unrecognized among recently arrived adult immigrants from the Horn of Africa. Intern Med J. 2003;33:47–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Vashi NA, Wirya SA, Inyang M, Kundu RV. Facial hyperpigmentation in skin of color: special considerations and treatment. Am J Clin Dermatol. 2017;18:215–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Mosher DB, Fitzpatrick TB. Piebaldism. Arch Dermatol. 1988;124:364–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Spritz RA. Piebaldism, Waardenburg syndrome and related disorders of melanocyte development. Semin Cutan Med Surg. 1997;16:15–23.PubMedCrossRefGoogle Scholar
  83. 83.
    Jimbow K, Fitzpatrick TB, Szabo G, Hori Y. Congenital circumscribed hypomelanosis: a characterization based on electron microscopic study of tuberous sclerosis, nevus depigmentosus, and piebaldism. J Invest Dermatol. 1975;64:50–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Ezoe K, Holmes SA, Ho L, et al. Novel mutations and deletions of the KIT (steel factor receptor) gene in human piebaldism. Am J Hum Genet. 1995;56:58–66.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Fleischman RA, Saltman DL, Stastny V, et al. Deletion of the c-kit protooncogene in the human developmental defect piebald trait. Proc Natl Acad Sci U S A. 1991;88:10885–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Grabbe J, Welker P, Dippel E, et al. Stem cell factor, a novel cutaneous growth factor for mast cells and melanocytes. Arch Dermatol Res. 1994;287:78–84.PubMedCrossRefGoogle Scholar
  87. 87.
    Nishikawa S, Kusakabe M, Yoshinaga K, et al. Inutero manipulation of coat color formation by a monoclonal anti-c-kit antibody: two distinct waves of c-kit-dependency during melanocyte development. EMBO J. 1991;10:2111–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wang R, Shu S, Zhang Y, Luo W, Zhang X. Identification of a novel KIT mutation in a Chinese family affected with piebaldism. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2016;33:637–40.PubMedGoogle Scholar
  89. 89.
    Hasan S, Dinh K, Lombardo F, et al. Hypopigmentation in an African patient treated with imatinib mesylate: a case report. J Natl Med Assoc. 2003;95:722–4.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Raanani P, Goldman JM, Ben-Bassat I. Challenges in oncology. Case 3. Depigmentation in a chronic myeloid leukemia patient treated with STI-571. J Clin Oncol. 2002;20:869–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Robert C, Spatz A, Faivre S, et al. Tyrosine kinase inhibition and grey hair. Lancet. 2003;361:1056.PubMedCrossRefGoogle Scholar
  92. 92.
    El Kouarty H, Dakhama BS. Piebaldism: a pigmentary anomaly to recognize: about a case and review of the literature. Pan Afr Med J. 2016;14:155.Google Scholar
  93. 93.
    Hart J, Miriyala K. Neural tube defects in Waardenburg syndrome: A case report and review of the literature. Am J Med Genet A. 2017;173(9):2472–7. Scholar
  94. 94.
    Hageman MJ, Delleman JW. Heterogeneity in Waardenburg syndrome. Am J Hum Genet. 1977;29:468–85.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Liu XZ, Newton VE, Read AP. Waardenburg syndrome type II: phenotypic findings and diagnostic criteria. Am J Med Genet. 1995;55:95–100.PubMedCrossRefGoogle Scholar
  96. 96.
    Kaplan P, de Chaderevian JP. Piebaldism-Waardenburg syndrome: histopathologic evidence for a neural crest syndrome. Am J Med Genet. 1988;31:679–88.PubMedCrossRefGoogle Scholar
  97. 97.
    Ortonne JP. Piebaldism, Waardenburg’s syndrome, and related disorders. “Neural crest depigmentation syndromes?”. Dermatol Clin. 1988;6:205–16.PubMedCrossRefGoogle Scholar
  98. 98.
    Baldwin CT, Hoth CF, Macina RA, et al. Mutations in PAX3 that cause Waardenburg syndrome type I: ten new mutations and review of the literature. Am J Med Genet. 1995;58:115–22.PubMedCrossRefGoogle Scholar
  99. 99.
    Baldwin CT, Lipsky NR, Hoth CF, et al. Mutations in PAX3 associated with Waardenburg syndrome type I. Hum Mutat. 1994;3:205–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Hoth CF, Milunsky A, Lipsky N, et al. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet. 1993;52:455–62.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Tassabehji M, Read AP, Newton VE, et al. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet. 1993;3:26–30.PubMedCrossRefGoogle Scholar
  102. 102.
    Wollnik B, Tukel T, Uyguner O, et al. Homozygous and heterozygous inheritance of PAX3 mutations causes different types of Waardenburg syndrome mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Am J Med Genet. 2003;122A:42–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Goulding MD, Lumsden A, Gruss P. Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord. Development. 1993;117:1001–16.PubMedGoogle Scholar
  104. 104.
    Watanabe A, Takeda K, Ploplis B, et al. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3 mutations in PAX3 that cause Waardenburg syndrome type I ten new mutations and review of the literature mutations in PAX3 associated with Waardenburg syndrome type I mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Nat Genet. 1998;18:283–6.PubMedCrossRefGoogle Scholar
  105. 105.
    McGill GG, Horstmann M, Widlund HR, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002;109:707–18.PubMedCrossRefGoogle Scholar
  106. 106.
    Shah KN, Dalal SJ, Desai MP, et al. White forelock, pigmentary disorder of irides, and long segment Hirschsprung disease: possible variant of Waardenburg syndrome. J Pediatr. 1981;99:432–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Bogdanova-Mihaylova P, Alexander MD, Murphy RP, Murphy SM. Waardenburg syndrome: a rare cause of inherited neuropathy due to SOX10 mutation. J Peripher Nerv Syst. 2017;22(3):219–23. Scholar
  108. 108.
    Edery P, Attie T, Amiel J, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet. 1996;12:442–4.PubMedCrossRefGoogle Scholar
  109. 109.
    McCallion AS, Chakravarti A. EDNRB/EDN3 and Hirschsprung disease type II. Pigment Cell Res. 2001;14:161–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Pingault V, Bondurand N, Lemort N, et al. A heterozygous endothelin 3 mutation in Waardenburg-Hirschsprung disease: is there a dosage effect of EDN3/EDNRB gene mutations on neurocristopathy phenotypes? J Med Genet. 2001;38:205–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pingault V, Bondurand N, Kuhlbrodt K, et al. SOX10 mutations inpatients with Waardenburg-Hirschsprung disease. Nat Genet. 1998;18:171–3.PubMedCrossRefGoogle Scholar
  112. 112.
    Chan KK, Wong CK, Lui VC, et al. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: differential effects on target gene regulation. J Cell Biochem. 2003;90:573–85.PubMedCrossRefGoogle Scholar
  113. 113.
    Paratore C, Goerich DE, Suter U, et al. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 2001;128:3949–61.PubMedGoogle Scholar
  114. 114.
    Arveiler B, Lasseaux E, Morice-Picard F. Clinical and genetic aspects of albinism. Presse Med. 2017;46(7-8 Pt 1):648–54.PubMedCrossRefGoogle Scholar
  115. 115.
    Barton DE, Kwon BS, Francke U. Human tyrosinase gene, mapped to chromosome 11 (q14-q21), defines second region of homology with mouse chromosome 7. Genomics. 1988;3:17–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Oetting WS, King RA. Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Hum Mutat. 1999;13:99–115.PubMedCrossRefGoogle Scholar
  117. 117.
    Boissy RE, Nordlund JJ. Molecular basis of congenital hypopigmentary disorders in humans: a review. Pigment Cell Res. 1997;10:12–24.PubMedCrossRefGoogle Scholar
  118. 118.
    Chintamaneni CD, Ramsay M, Colman MA, et al. Mapping the human CAS2 gene, the homologue of the mouse brown (b) locus, to human chromosome 9p22-pter. Biochem Biophys Res Commun. 1991;178:227–35.PubMedCrossRefGoogle Scholar
  119. 119.
    Kobayashi T, Urabe K, Winder A, et al. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 1994;13:5818–25.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Newton JM, Cohen-Barak O, Hagiwara N, et al. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am J Hum Genet. 2001;69:981–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Incerti B, Cortese K, Pizzigoni A, et al. Oa1 knock-out: new insights on the pathogenesis of ocular albinism type 1. Hum Mol Genet. 2000;9:2781–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Schachne JP, Glaser N, Lee SH, et al. Hermansky-Pudlak syndrome: case report and clinicopathologic review. J Am Acad Dermatol. 1990;22:926–32.PubMedCrossRefGoogle Scholar
  123. 123.
    Witkop CJ, Krumwiede M, Sedano H, et al. Reliability of absent platelet dense bodies as a diagnostic criterion for Hermansky-Pudlak syndrome. Am J Hematol. 1987;26:305–11.PubMedCrossRefGoogle Scholar
  124. 124.
    Martina JA, Moriyama K, Bonifacino JS. BLOC-3, a protein complex containing the Hermansky-Pudlak syndrome gene products HPS1 and HPS4. J Biol Chem. 2003;278:29376–84.PubMedCrossRefGoogle Scholar
  125. 125.
    Dell’Angelica EC, Shotelersuk V, Aguilar RC, et al. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell. 1999;3:11–21.PubMedCrossRefGoogle Scholar
  126. 126.
    Sugita M, Cao X, Watts GF, et al. Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity. 2002;16:697–706.PubMedCrossRefGoogle Scholar
  127. 127.
    Suzuki T, Li W, Zhang Q, et al. The gene mutated in cocoa mice, carrying a defect of organelle biogenesis, is a homologue of the human Hermansky-Pudlak syndrome-3 gene. Genomics. 2001;78:30–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Zhang Q, Zhao B, Li W, et al. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky-Pudlak syndrome types 5 and 6. Nat Genet. 2003;33:145–53.PubMedCrossRefGoogle Scholar
  129. 129.
    Li W, Zhang Q, Oiso N, et al. Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet. 2003;35:84–9.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tchernev VT, Mansfield TA, Giot L, et al. The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins. Mol Med. 2002;8:56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Rogers SL, Karcher RL, Roland JT, et al. Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J Cell Biol. 1999;146:1265–76.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Bahadoran P, Aberdam E, Mantoux F, et al. Rab27a: a key to melanosome transport in human melanocytes. J Cell Biol. 2001;152:843–50.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Menasche G, Ho CH, Sanal O, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest. 2003;112:450–6.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ahluwalia J, Correa-Selm LM, Rao BK. Vitiligo: not simply a skin disease. Skin Med. 2017;15:125–7.Google Scholar
  135. 135.
    Alkhateeb A, Stetler GL, Old W, Talbert J, Uhlhorn C, Taylor M, et al. Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3–p32.2. Hum Mol Genet. 2002;11:661–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Fain PR, Gowan K, LaBerge GS, et al. A genomewide screen for generalized vitiligo: confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci. Am J Hum Genet. 2003;72:1560–4.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE. Current and emerging treatments for vitiligo. J Am Acad Dermatol. 2017;77:17–29.PubMedCrossRefGoogle Scholar
  138. 138.
    Calleja-Stafrace D, Vella C. Tuberous sclerosis associated with multiple hepatic lipomatous tumours. Images Paediatr Cardiol. 2016;18:1–4.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Hurwitz S, Braverman IM. White spots in tuberous sclerosis. J Pediatr. 1970;77:587–94.PubMedCrossRefGoogle Scholar
  140. 140.
    Awan KJ. Leaf-shaped lesions of ocular fundus and white eyelashes in tuberous sclerosis. South Med J. 1982;75:227–38.PubMedCrossRefGoogle Scholar
  141. 141.
    Gutman I, Dunn D, Behrens M, et al. Hypopigmented iris spot. An early sign of tuberous sclerosis. Ophthalmology. 1982;89:1155–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Sampson JR, Harris PC. The molecular genetics of tuberous sclerosis. Hum Mol Genet. 1994;3:1477–80.PubMedCrossRefGoogle Scholar
  143. 143.
    van Slegtenhorst M, de Hoogt R, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277:805–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Benvenuto G, Li S, Brown SJ, et al. The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene. 2000;19:6306–16.PubMedCrossRefGoogle Scholar
  145. 145.
    Zhang J, Li M, Yao Z. Molecular screening strategies for NF1-like syndromes with café-au-lait macules (review). Mol Med Rep. 2016;14:4023–9.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    DeClue JE, Cohen BD, Lowy DR. Identification and characterization of the neurofibromatosis type 1 protein product. Proc Natl Acad Sci U S A. 1991;88:9914–8.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Basu TN, Gutmann DH, Fletcher JA, et al. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992;356:713–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Griesser J, Kaufmann D, Maier B, et al. Post-transcriptional regulation of neurofibromin level in cultured human melanocytes in response to growth factors. J Invest Dermatol. 1997;108:275–80.PubMedCrossRefGoogle Scholar
  149. 149.
    Innamorati G, Valenti MT, Giacomello L, Dalle Carbonare L, Bassi C. GNAS mutations: drivers or co-pilots? Yet, promising diagnostic biomarkers. Trends Cancer. 2016;2:282–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Schwindinger WF, Francomano CA, Levine MA. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci U S A. 1992;89:5152–6.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Passeron T, Bahadoran P, Bertolotto C, et al. Cyclic AMP promotes a peripheral distribution of melanosomes and stimulates melanophilin/Slac2-a and actin association. FASEB J. 2004;18:989–91.PubMedCrossRefGoogle Scholar
  152. 152.
    Ogbechie-Godec OA, Elbuluk N. Melasma: an up-to-date comprehensive review. Dermatol Ther (Heidelb). 2017;7(3):305–18. Scholar
  153. 153.
    Sardana K, Ghunawat S. Lasers for Lentigines, from Q-Switched to Erbium-Doped Yttrium Aluminium Garnet Micropeel, is There A Need to Reinvent the Wheel? J Cutan Aesthet Surg. 2015;8:233–5.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ghosh SK, Majumdar B, Rudra O, Chakraborty S. LEOPARD syndrome. Dermatol Online J. 2015;21:13030/qt2d55s0t1.PubMedGoogle Scholar
  155. 155.
    Gorlin RJ, Anderson RC, Blaw M. Multiple lentigines syndrome. Am J Dis Child. 1969;117:652–62.PubMedCrossRefGoogle Scholar
  156. 156.
    Digilio MC, Conti E, Sarkozy A, et al. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet. 2002;71:389–94.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Jenne DE, Reimann H, Nezu J, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18:38–43.PubMedCrossRefGoogle Scholar
  158. 158.
    Mehenni H, Blouin JL, Radhakrishna U, et al. Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet. 1997;61:1327–34.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Miyamura Y, Suzuki T, Kono M, et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet. 2003;73:693–9.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Millet A, Martin AR, Ronco C, Rocchi S, Benhida R. Metastatic melanoma: insights into the evolution of the treatments and future challenges. Med Res Rev. 2017;37:98–148.PubMedCrossRefGoogle Scholar
  161. 161.
    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Lui P, Cashin R, Machado M, et al. Treatments for metastatic melanoma: synthesis of evidence from randomized trials. Cancer Treat Rev. 2007;33:665–80.PubMedCrossRefGoogle Scholar
  163. 163.
    Eggermont AM, Schadendorf D. Melanoma and immunotherapy. Hematol Oncol Clin North Am. 2009;23:547–64.PubMedCrossRefGoogle Scholar
  164. 164.
    Albino AP, Nanus DM, Mentle IR, et al. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene. 1989;4:1363–74.PubMedGoogle Scholar
  165. 165.
    Tsao H, Goel V, Wu H, et al. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004;122:337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Sharpless E, Chin L. The INK4a/ARF locus and melanoma. Oncogene. 2003;22:3092–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Curtin JA, Busam K, Pinkel D, et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2003;24:4340–6.CrossRefGoogle Scholar
  168. 168.
    Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.PubMedCrossRefGoogle Scholar
  169. 169.
    Hartmann A, Brocker EB, Becker JC. Hypopigmentary skin disorders: current treatment options and future directions. Drugs. 2004;64:89–107.PubMedCrossRefGoogle Scholar
  170. 170.
    Njoo MD, Westerhof W, Bos JD, et al. A systematic review of autologous transplantation methods in vitiligo. Arch Dermatol. 1998;134:1543–9.PubMedGoogle Scholar
  171. 171.
    Falabella R. Surgical therapies for vitiligo. Clin Dermatol. 1997;15:927–39.PubMedCrossRefGoogle Scholar
  172. 172.
    Guerra L, Capurro S, Melchi F, et al. Treatment of stable vitiligo by timed surgery and transplantation of cultured epidermal autografts. Arch Dermatol. 2000;136:1380–9.PubMedCrossRefGoogle Scholar
  173. 173.
    Yaar M, Gilchrest BA. Vitiligo: the evolution of cultured epidermal autografts and other surgical treatment modalities. Arch Dermatol. 2001;137:348–59.PubMedGoogle Scholar
  174. 174.
    Na GY, Seo SK, Choi SK. Single hair grafting for the treatment of vitiligo. J Am Acad Dermatol. 1998;38:580–4.PubMedCrossRefGoogle Scholar
  175. 175.
    Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105:1295–301.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Visscher MO. Skin color and pigmentation in ethnic skin. Facial Plast Surg Clin North Am. 2017;25:119–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manish Adhikari
    • 1
  • Anser Ali
    • 2
  • Nagendra Kumar Kaushik
    • 1
  • Eun Ha Choi
    • 1
    Email author
  1. 1.Department of Electrical and Biological Physics, Applied Plasma Medicine CenterKwangwoon UniversitySeoulRepublic of Korea
  2. 2.Department of ZoologyMirpur University of Science and TechnologyMirpurPakistan

Personalised recommendations