Perspectives in General Surgery

  • Lars Ivo Partecke
  • Sander Bekeschus
  • Kim Rouven Liedtke


Non-thermal plasma (NTP) offers promising opportunities to advance and refine surgical practice. The combination of stimulating tissue proliferation and decreasing bacterial load predestines NTP as add-on tool in wound treatment. Additionally, plasma-based modification of foreign materials, such as, vascular grafts or osteosynthesis materials improves their biocompatibility. Surgery in oncology is another auspicious field of application. Micrometastasis in the margins of excised tumors often cause tumor relapse. Due to selective induction of apoptosis in tumor cells, NTP treatment of wound margins after surgical bulk removal offers great potential minimize disease recurrence and improve patients’ outcome. However, compatibility with the special setting in an operating theatre is an issue not addressed yet with most plasma sources.


New surgical approaches Non-thermal plasma Tumor therapy Wound healing 


  1. 1.
    Partecke LI, Evert K, Haugk J, Doering F, Normann L, Diedrich S, Weiss FU, Evert M, Huebner NO, Guenther C, et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:473.CrossRefGoogle Scholar
  2. 2.
    Doppstadt C, van der Linde J, Diedrich S, Evert K, Menges P, Matthes R, Partecke I, Weltmann K, Heidecke C. Untersuchung zur intraperitonealen Anwendung von Tissue Tolerable Plasma (TTP) auf den Darm der Maus. Z Gastroenterol. 2013;51(08):K347.CrossRefGoogle Scholar
  3. 3.
    Masur K, von Behr M, Bekeschus S, Weltmann KD, Hackbarth C, Heidecke CD, von Bernstorff W, von Woedtke T, Partecke LI. Synergistic inhibition of tumor cell proliferation by cold plasma and gemcitabine. Plasma Process Polym. 2015;12(12):1377–82.CrossRefGoogle Scholar
  4. 4.
    Raiser J, Zenker M. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys. 2006;39(16):3520–3.CrossRefGoogle Scholar
  5. 5.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5(6):503–33.CrossRefGoogle Scholar
  6. 6.
    Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26(4):425–42.CrossRefGoogle Scholar
  7. 7.
    Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect. 2001;49(2):87–93.CrossRefGoogle Scholar
  8. 8.
    Leaper DJ, Van Goor H, Reilly J, Petrosillo N, Geiss HK, Torres AJ, Berger A. Surgical site infection—a European perspective of incidence and economic burden. Int Wound J. 2004;1(4):247–73.CrossRefGoogle Scholar
  9. 9.
    Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011;7(5):2015–28.CrossRefGoogle Scholar
  10. 10.
    Briem D, Strametz S, Schroder K, Meenen NM, Lehmann W, Linhart W, Ohl A, Rueger JM. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci Mater Med. 2005;16(7):671–7.CrossRefGoogle Scholar
  11. 11.
    Gomathi N, Sureshkumar A, Neogi S. RF plasma-treated polymers for biomedical applications. Curr Sci. 2008;94(11):1478–86.Google Scholar
  12. 12.
    Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules. 2009;10(9):2351–78.CrossRefGoogle Scholar
  13. 13.
    Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM. Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small. 2009;5(10):1195–206.PubMedGoogle Scholar
  14. 14.
    Valence SD, Tille J-C, Chaabane C, Gurny R, Bochaton-Piallat M-L, Walpoth BH, Möller M. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm. 2013;85(1):78–86.CrossRefGoogle Scholar
  15. 15.
    Chong DS, Turner LA, Gadegaard N, Seifalian AM, Dalby MJ, Hamilton G. Nanotopography and plasma treatment: redesigning the surface for vascular graft endothelialisation. Eur J Vasc Endovasc Surg. 2015;49(3):335–43.CrossRefGoogle Scholar
  16. 16.
    Loya MC, Brammer KS, Choi C, Chen LH, Jin S. Plasma-induced nanopillars on bare metal coronary stent surface for enhanced endothelialization. Acta Biomater. 2010;6(12):4589–95.CrossRefGoogle Scholar
  17. 17.
    Seon GM, Seo HJ, Kwon SY, Lee MH, Kwon BJ, Kim MS, Koo MA, Park BJ, Park JC. Titanium surface modification by using microwave-induced argon plasma in various conditions to enhance osteoblast biocompatibility. Biomater Res. 2015;19:13.CrossRefGoogle Scholar
  18. 18.
    Hauser J, Kruger CD, Halfmann H, Awakowicz P, Koller M, Esenwein SA. Surface modification of metal implant materials by low-pressure plasma treatment. Biomed Tech (Berl). 2009;54(2):98–106.CrossRefGoogle Scholar
  19. 19.
    Tan F, O'Neill F, Naciri M, Dowling D, Al-Rubeai M. Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating. Acta Biomater. 2012;8(4):1627–38.CrossRefGoogle Scholar
  20. 20.
    Ferraz EP, Sverzut AT, Freitas GP, Sa JC, Alves C Jr, Beloti MM, Rosa AL. Bone tissue response to plasma-nitrided titanium implant surfaces. J Appl Oral Sci. 2015;23(1):9–13.CrossRefGoogle Scholar
  21. 21.
    Testrich H, Rebl H, Finke B, Hempel F, Nebe B, Meichsner J. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3875–80.CrossRefGoogle Scholar
  22. 22.
    Seker E, Kilicarslan MA, Deniz ST, Mumcu E, Ozkan P. Effect of atmospheric plasma versus conventional surface treatments on the adhesion capability between self-adhesive resin cement and titanium surface. J Adv Prosthodont. 2015;7(3):249–56.CrossRefGoogle Scholar
  23. 23.
    Steinbeck MJ, Chernets N, Zhang J, Kurpad DS, Fridman G, Fridman A, Freeman TA. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment. PLoS One. 2013;8(12):e82143.CrossRefGoogle Scholar
  24. 24.
    Lee OJ, HW J, Khang G, Sun PP, Rivera J, Cho JH, Park SJ, Eden JG, Park CH. An experimental burn wound-healing study of non-thermal atmospheric pressure microplasma jet arrays. J Tissue Eng Regen Med. 2016;10(4):348–57.CrossRefGoogle Scholar
  25. 25.
    Riskin DJ, Longaker MT, Gertner M, Krummel TM. Innovation in surgery: a historical perspective. Ann Surg. 2006;244(5):686–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lars Ivo Partecke
    • 1
  • Sander Bekeschus
    • 2
  • Kim Rouven Liedtke
    • 1
  1. 1.Department of SurgeryUniversity of GreifswaldGreifswaldGermany
  2. 2.Leibniz Institute for Plasma Science and Technology|INP, ZIK PlasmatisGreifswaldGermany

Personalised recommendations