Plasma Sources for Biomedical Applications

  • Andreas Helmke
  • Torsten Gerling
  • Klaus-Dieter Weltmann


This chapter introduces the reader to the physical characteristics of plasma in general and subsequently focuses on cold atmospheric plasma (CAP). This technological branch is especially important for biomedical applications. The technological perspective for generation of CAP by means of different gas discharge concepts and their applications is reviewed and concepts for their technical realization are introduced. Challenges and solutions associated with specific plasma source concepts are discussed. Currently available medical products with a broad scientific background are highlighted. Finally, the authors envision prospective technical solutions showcasing the broad bandwidth of plasma engineering.


Plasma technology Atmospheric pressure Cold atmospheric plasma (CAP) Gas discharge Plasma jet Dielectric barrier discharge (DBD) Corona Torch Spark Medical product Plasma medicine Wound healing 



The authors Gerling and Weltmann thank the internal and external cooperation partners of the projects “Campus PlasmaMed I and II,” funded by the German Federal Ministry of Education and Research (13 N9779 and 13 N11188); “Plasmamedizinische Forschung—neue pharmazeutische und medizinische Anwendungsfelder,” funded by the Ministry for Research, Development and Culture of the State of Mecklenburg-Vorpommern and the European Union by the European Social Fund (AU 11 038, ESF/IV-BM-B35-0010/13); “Entwicklung eines neuartigen Wundbehandlungssystems auf Basis von Plasmatechnologien und dem Einsatz flächiger textiler Plasmaquellen für den mobilen und stationären Einsatz—PlasmaWundTex,” funded by Zentrales Innovationsprogramm Mittelstand of the German Federal Ministry for Economic Affairs and Energy (KF2046509AK3); “Erweiterung der medizinischen Anwendungsmöglichkeiten kalter Atmosphärendruckplasmajets (MEDKAP),” funded by the German Ministry of Education; “Plasmamedizin—Anwendungsorientierte Grundlagenforschung zu physikalischem Plasma in der Medizin” funded by the Ministry of Education, Science and Culture of the State of Mecklenburg-Vorpommern (grant: AU 15 001).

The author Helmke thanks all cooperation partners of the research group “BioLiP”, funded by the German Federal Ministry of Education and Research (BMBF, grant no. 13 N9089), the associated partners in the project “PlaStraKomb,” funded by the BMBF (grant no. PNT51501), the partners of the research group “Campus PlasmaMed II,” funded by the BMBF (grant no. 13 N11190), as well as the partners of the joint research project “WuPlaKo,” funded by the BMBF (grant no. 13GW0041D) and “KonchaWu,” funded by the Ministry of economics of the State of Niedersachsen and the European Regional Development Fund ERDF (grant no. ZW 3-85006987).


  1. 1.
    Langmuir I. Oscillations in ionized gases. Proc Natl Acad Sci USA. 1928;14:627–37.CrossRefGoogle Scholar
  2. 2.
    Mott-Smith HM. History of “plasmas”. Nature. 1971;233:219.CrossRefGoogle Scholar
  3. 3.
    von Woedtke T, Reuter S, Masur K, et al. Plasmas for medicine. Phys Rep. 2013;530:291–320.CrossRefGoogle Scholar
  4. 4.
    Kong MG, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review. New J Phys. 2009;11:115012.CrossRefGoogle Scholar
  5. 5.
    Partecke LI, Evert K, Haugk J, et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:473.CrossRefGoogle Scholar
  6. 6.
    Kuechler A. High voltage engineering. 1st ed. Heidelberg: Springer; 2018.CrossRefGoogle Scholar
  7. 7.
    Weltmann K-D, Kindel E, von Woedtke T, et al. Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem. 2010;82:1223–37.CrossRefGoogle Scholar
  8. 8.
    Weltmann K-D, von Woedtke T. Basic requirements for plasma sources in medicine. Eur Phys J Appl Phys. 2011;55:13807.CrossRefGoogle Scholar
  9. 9.
    Lu X, Laroussi M, Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol. 2012;21:034005.CrossRefGoogle Scholar
  10. 10.
    Kuchenbecker M, Bibinov N, Kaemling A, et al. Characterization of DBD plasma source for biomedical applications. J Phys D Appl Phys. 2009;42:045212.CrossRefGoogle Scholar
  11. 11.
    Helmke A, Hoffmeister D, Berge F, et al. Physical and microbiological characterisation of Staphylococcus epidermidis inactivation by dielectric barrier discharge plasma. Plasma Process Polym. 2011;8:278–86.CrossRefGoogle Scholar
  12. 12.
    Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine. Plasma Process Polym. 2008;5:503–33.CrossRefGoogle Scholar
  13. 13.
    Eliasson B, Kogelschatz U. Modeling and applications of silent discharge plasmas. IEEE Trans Plasma Sci. 1991;19:309–23.CrossRefGoogle Scholar
  14. 14.
    van Veldhuizen EM, Rutgers WR. Pulsed positive corona streamer propagation and branching. J Phys D Appl Phys. 2002;35:2169–79.CrossRefGoogle Scholar
  15. 15.
    Kogelschatz U. Filamentary, patterned, and diffuse barrier discharges. IEEE Trans Plasma Sci. 2002;30:1400–8.CrossRefGoogle Scholar
  16. 16.
    Helmke A, Franck M, Wandke D, Vioel W. Tempo-spatially resolved ozone characteristics during single-electrode dielectric barrier discharge (SE-DBD) operation against metal and porcine skin surfaces. Plasma Med. 2014;4:67–77.CrossRefGoogle Scholar
  17. 17.
    Keller S, Bibinov N, Neugebauer A, et al. Electrical and spectroscopic characterization of a surgical argon plasma discharge. J Phys D Appl Phys. 2013;46:025402.CrossRefGoogle Scholar
  18. 18.
    Zenker M. Argon plasma coagulation. GMS Krankenhaushyg Interdiszip. 2008;3:Doc15.Google Scholar
  19. 19.
    Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process Polym. 2007;4:777–88.CrossRefGoogle Scholar
  20. 20.
    Winter J, Brandenburg R, Weltmann K-D. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. 2015;24:064001.CrossRefGoogle Scholar
  21. 21.
    Shimizu T, Steffes B, Pompl R, et al. Characterization of microwave plasma torch for decontamination. Plasma Process Polym. 2008;5:577–82.CrossRefGoogle Scholar
  22. 22.
    Morfill GE, Kong MG, Zimmermann JL. Focus on plasma medicine. New J Phys. 2009;11:115011,8ppCrossRefGoogle Scholar
  23. 23.
    Teschke M, Kedzierski J, Finantu-Dinu EG, et al. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Trans Plasma Sci. 2005;33:310–1.CrossRefGoogle Scholar
  24. 24.
    Reuter S, Winter J, Iseni S, Peters S, Schmidt-Bleker A, Duennbier M, Schaefer J, Foest R, Weltmann KD. Detection of ozone in a MHz argon plasma bullet jet. Plasma Sources Sci Technol. 2012;21:034015.CrossRefGoogle Scholar
  25. 25.
    Lu X, Naidis GV, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep. 2016;630:1–84.CrossRefGoogle Scholar
  26. 26.
    Darny T, Pouvesle J-M, Puech V, et al. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Sci Technol. 2017;26:45008.CrossRefGoogle Scholar
  27. 27.
    Bussiahn R, Brandenburg R, Gerling T, et al. The hairline plasma: an intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications. Appl Phys Lett. 2010;96:143701.CrossRefGoogle Scholar
  28. 28.
    Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26:425–42.CrossRefGoogle Scholar
  29. 29.
    Helmke A, Mahmoodzada M, Wandke D, Weltmann KD, Viöl W. Impact of electrode design, supply voltage and interelectrode distance on safety aspects of a medical DBD plasma source. Contrib Plasma Phys. 2013;53:623–38.CrossRefGoogle Scholar
  30. 30.
    Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett. 2005;87:113902–3.CrossRefGoogle Scholar
  31. 31.
    Dang CN, Anwar R, Thomas G, et al. The biogun: a novel way of eradicating MRSA colonization in diabetic foot ulcers. Diabetes Care. 2006;29:1176–7.CrossRefGoogle Scholar
  32. 32.
    Shekhter AB, Kabisov RK, Pekshev AV, et al. Experimental and clinical validation of Plasmadynamic therapy of wounds with nitric oxide. Bull Exp Biol Med. 1998;126:829–34.CrossRefGoogle Scholar
  33. 33.
    Pekshev AV, Shekhter AB, Vagapov AB, et al. Study of plasma-chemical NO-containing gas flow for treatment of wounds and inflammatory processes. Nitric Oxide. 2017; In press.Google Scholar
  34. 34.
    Hants Y, Kabiri D, Drukker L, et al. Preliminary evaluation of novel skin closure of Pfannenstiel incisions using cold helium plasma and chitosan films. J Matern Fetal Neonatal Med. 2014;27:1637–42.CrossRefGoogle Scholar
  35. 35.
    Bekeschus S, Schmidt A, Weltmann K-D, et al. The plasma jet kINPen—a powerful tool for wound healing. Clin Plasma Med. 2016;4:19–28.CrossRefGoogle Scholar
  36. 36.
    Isbary G, Morfill G, Schmidt H, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andreas Helmke
    • 1
    • 2
  • Torsten Gerling
    • 3
  • Klaus-Dieter Weltmann
    • 3
  1. 1.Application Center for Plasma und PhotonicsFraunhofer Institute for Surface Engineering and Thin Films ISTGöttingenGermany
  2. 2.Faculty of Natural Sciences and TechnologyHAWK University of Applied Sciences and ArtsGöttingenGermany
  3. 3.Leibniz Institute for Plasma Science and Technology e.V.GreifswaldGermany

Personalised recommendations