Advertisement

Game Experience and Brain Based Assessment of Motivational Goal Orientations in Video Games

  • Mohamed S. Benlamine
  • René Dombouya
  • Aude Dufresne
  • Claude Frasson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10512)

Abstract

The current study aims to measure the goal orientations motivation in different scenes of a video-game. The evaluation of player experience was done with both subjective measures through questionnaire and objective measures through brain wave activity (electroencephalography - EEG). We used GameFlow questionnaire to characterize the player’s mastery goal in playing video game (Master or Performant). In terms of brain activity, we used the Frontal alpha asymmetry (FAA) to assess the player approach/withdrawal behavior within a game scene. Using game scene’s design goal (defined by OCC variables) and player personality traits (using Big Five questionnaire), the resulting machine learning model predicts players’ motivational goal orientations in order to adapt the game. In this study, we address player’s motivation in game scenes by analyzing player’s profile, his situation in scene and affective physiological data.

Keywords

Motivation Video games Goal orientations Player model EEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Driver, M.: Coaching Positively: Lessons For Coaches From Positive Psychology: Lessons for Coaches from Positive Psychology. McGraw-Hill Education, UK (2011)Google Scholar
  2. 2.
    Elliot, A.J., Covington, M.V.: Approach and avoidance motivation. Educational Psychology Review 13(2), 73–92 (2001)CrossRefGoogle Scholar
  3. 3.
    Cosmides, L., Tooby, J.: Reasoning and natural selection. Encyclopedia of Human Biology 6, 493–503 (1991)Google Scholar
  4. 4.
    Davidson, R.J.: The neural circuitry of emotion and affective style: Prefrontal cortex and amygdala contributions. Social Science Information 40(1), 11–37 (2001)CrossRefGoogle Scholar
  5. 5.
    Phan, K.L., Wager, T., Taylor, S.F., Liberzon, I.: Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2), 331–348 (2002)CrossRefGoogle Scholar
  6. 6.
    Davidson, R.J.: What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biological Psychology 67(1), 219–234 (2004)CrossRefGoogle Scholar
  7. 7.
    Amodio, D.M., Master, S.L., Yee, C.M., Taylor, S.E.: Neurocognitive components of the behavioral inhibition and activation systems: Implications for theories of self-regulation. Psychophysiology 45(1), 11–19 (2008)Google Scholar
  8. 8.
    Horan, W.P., Wynn, J.K., Mathis, I., Miller, G.A., Green, M.F.: Approach and withdrawal motivation in schizophrenia: an examination of frontal brain asymmetric activity. PLoS One 9(10), e110007 (2014)CrossRefGoogle Scholar
  9. 9.
    Derbali, L., Ghali, R., Frasson, C.: Assessing Motivational Strategies in Serious Games Using Hidden Markov Models (2013)Google Scholar
  10. 10.
    Derbali, L., Frasson, C.: Prediction of players motivational states using electrophysiological measures during serious game play. IEEE (2010)Google Scholar
  11. 11.
    Nakamura, J., Csikszentmihalyi, M.: The concept of flow. In: Handbook of positive psychology, pp. 89–105 (2002)Google Scholar
  12. 12.
    Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., Walton, A.: Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies 66(9), 641–661 (2008)CrossRefGoogle Scholar
  13. 13.
    Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. ACM (2008)Google Scholar
  14. 14.
    Elliot, A.J., Murayama, K.: On the measurement of achievement goals: Critique, illustration, and application. Journal of Educational Psychology 100(3), 613 (2008)CrossRefGoogle Scholar
  15. 15.
    Elliot, A.J., McGregor, H.A., Gable, S.: Achievement goals, study strategies, and exam performance: A mediational analysis. Journal of Educational Psychology 91(3), 549 (1999)CrossRefGoogle Scholar
  16. 16.
    Wolters, C.A.: Advancing Achievement Goal Theory: Using Goal Structures and Goal Orientations to Predict Students’ Motivation, Cognition, and Achievement. Journal of Educational Psychology 96(2), 236 (2004)CrossRefGoogle Scholar
  17. 17.
    Ortony, A., Clore, G.L., Collins, A.: The cognitive structure of emotions. Cambridge university press (1990)Google Scholar
  18. 18.
    Vallerand, R.J., Thill, E.E.: Introduction au concept de motivation. Introduction à la psychologie de la motivation, pp. 3–39 (1993)Google Scholar
  19. 19.
    Maslow, A.H.: A theory of human motivation. Psychological Review 50(4), 370 (1943)CrossRefGoogle Scholar
  20. 20.
    Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology 25(1), 54–67 (2000)CrossRefGoogle Scholar
  21. 21.
    Hull, C.L.: The conflicting psychologies of learning—a way out. Psychological Review 42(6), 491 (1935)CrossRefGoogle Scholar
  22. 22.
    Diamond, D.M., Campbell, A.M., Park, C.R., Halonen, J., Zoladz, P.R.: The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural plasticity 2007 (2007)Google Scholar
  23. 23.
    Yerkes, R.M., Dodson, J.D.: The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology 18(5), 459–482 (1908)CrossRefGoogle Scholar
  24. 24.
    Teigen, K.H.: Yerkes-Dodson: A law for all seasons. Theory & Psychology 4(4), 525–547 (1994)CrossRefGoogle Scholar
  25. 25.
    Murray, H.A.: Explorations in personality (1938)Google Scholar
  26. 26.
    McClelland, D.C., Atkinson, J.W., Clark, R.A., Lowell, E.L.: The achievement motive (1976)Google Scholar
  27. 27.
    McClelland, D.C.: Motives, personality, and society: Selected papers. Praeger Publishers (1984)Google Scholar
  28. 28.
    Conroy, D.E.: Progress in the development of a multidimensional measure of fear of failure: The Performance Failure Appraisal Inventory (PFAI). Anxiety, Stress and Coping 14(4), 431–452 (2001)CrossRefGoogle Scholar
  29. 29.
    Elliott, E.S., Dweck, C.S.: Goals: An approach to motivation and achievement. Journal of Personality and Social Psychology 54(1), 5 (1988)CrossRefGoogle Scholar
  30. 30.
    Elliot, A.J.: Approach and avoidance motivation and achievement goals. Educational Psychologist 34(3), 169–189 (1999)CrossRefGoogle Scholar
  31. 31.
    Malone, T.W.: Toward a theory of intrinsically motivating instruction*. Cognitive Science 5(4), 333–369 (1981)CrossRefGoogle Scholar
  32. 32.
    Malone, T.W., Lepper, M.R.: Making learning fun: A taxonomy of intrinsic motivations for learning. Aptitude, Learning, and Instruction 3(1987), 223–253 (1987)Google Scholar
  33. 33.
    Lepper, M.R., Malone, T.W.: Intrinsic motivation and instructional effectiveness in computer-based education. Aptitude, Learning, and Instruction 3, 255–286 (1987)Google Scholar
  34. 34.
    Przybylski, A.K., Rigby, C.S., Ryan, R.M.: A motivational model of video game engagement. Review of General Psychology 14(2), 154 (2010)CrossRefGoogle Scholar
  35. 35.
    Ryan, R.M., Rigby, C.S., Przybylski, A.: The motivational pull of video games: A self-determination theory approach. Motivation and Emotion 30(4), 344–360 (2006)CrossRefGoogle Scholar
  36. 36.
    Flow, C.: The psychology of optimal experience. Harper & Row, New York (1990)Google Scholar
  37. 37.
    Koster, R.: Theory of fun for game design. O’Reilly Media, Inc. (2013)Google Scholar
  38. 38.
    Yee, N.: Motivations for play in online games. CyberPsychology & Behavior 9(6), 772–775 (2006)CrossRefGoogle Scholar
  39. 39.
    Goldberg, L.R.: The development of markers for the Big-Five factor structure. Psychological Assessment 4(1), 26 (1992)CrossRefGoogle Scholar
  40. 40.
    Sweetser, P., Johnson, D.M., Wyeth, P.: Revisiting the GameFlow model with detailed heuristics. Journal: Creative Technologies 3 (2012)Google Scholar
  41. 41.
    Sweetser, P., Wyeth, P.: GameFlow: a model for evaluating player enjoyment in games. Computers in Entertainment (CIE) 3(3), 3 (2005)CrossRefGoogle Scholar
  42. 42.
    Coan, J.A., Allen, J.J.: Frontal EEG asymmetry and the behavioral activation and inhibition systems. Psychophysiology 40(1), 106–114 (2003)CrossRefGoogle Scholar
  43. 43.
    Hagemann, D., Naumann, E., Thayer, J.F., Bartussek, D.: Does resting electroencephalograph asymmetry reflect a trait? an application of latent state-trait theory. Journal of Personality and Social Psychology 82(4), 619 (2002)CrossRefGoogle Scholar
  44. 44.
    Harmon-Jones, E., Gable, P.A., Peterson, C.K.: The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology 84(3), 451–462 (2010)CrossRefGoogle Scholar
  45. 45.
    Tomarken, A.J., Davidson, R.J., Henriques, J.B.: Resting frontal brain asymmetry predicts affective responses to films. Journal of Personality and Social Psychology 59(4), 791 (1990)CrossRefGoogle Scholar
  46. 46.
    Kaplan, A., Maehr, M.L.: The contributions and prospects of goal orientation theory. Educational Psychology Review 19(2), 141–184 (2007)CrossRefGoogle Scholar
  47. 47.
    DeShon, R.P., Gillespie, J.Z.: A motivated action theory account of goal orientation. Journal of Applied Psychology 90(6), 1096 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mohamed S. Benlamine
    • 1
  • René Dombouya
    • 1
  • Aude Dufresne
    • 1
  • Claude Frasson
    • 1
  1. 1.Heron Lab, Department of Computer ScienceUniversity of MontrealMontrealCanada

Personalised recommendations