Skip to main content

Tangent Bicharacteristics and Ill-Posedness

  • Chapter
  • First Online:
  • 1259 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2202))

Abstract

In this chapter we provide a homogeneous second order differential operator P of spectral type 2 on Σ with polynomial coefficients with a bicharacteristic tangent to the double characteristic manifold and satisfies the Levi condition for which the Cauchy problem is ill-posed in the Gevrey class of order s > 5, in particular the Cauchy problem is C ill-posed . We also discuss some open questions on the Cauchy problem for P of spectral type 2 with tangent bicharacteristics and no transition. In the last section we make some remarks on the Cauchy problem for P with transition of spectral type under the assumption of no tangent bicharacteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Barbagallo, V. Esposito, A global existence and uniqueness result for a class of hyperbolic operators. Ricerche Mat. 63, 25–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Bernardi, A. Bove, Geometric transition for a class of hyperbolic operators with double characteristics. Jpn. J. Math. 23, 1–87 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bernardi, A. Bove, A remark on the Cauchy problem for a model hyperbolic operator, in Hyperbolic Differential Operators and Related Problems. Lecture Notes in Pure and Applied Mathematics, vol. 233 (Dekker, New York, 2003), pp. 41–51

    Google Scholar 

  4. E. Bernardi, T. Nishitani, On the Cauchy problem for noneffectively hyperbolic operators, the Gevrey 5 well posedness. J. Anal. Math. 105, 197–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Bernardi, T. Nishitani, On the Cauchy problem for noneffectively hyperbolic operators. The Gevrey 4 well-posedness. Kyoto J. Math. 51, 767–810 (2011)

    Google Scholar 

  6. E. Bernardi, T. Nishitani, On the Cauchy problem for noneffectively hyperbolic operators. The Gevrey 3 well-posedness. J. Hyperbolic Differ. Equ. 8, 615–650 (2011)

    Google Scholar 

  7. E. Bernardi, C. Parenti, A. Parmeggiani, The Cauchy problem for hyperbolic operators with double characteristics in presence of transition. Commun. Partial Differ. Equ. 37, 1315–1356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.D. Bronshtein, Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Tr. Mosk. Mat. Obs. 41, 83–99 (1980)

    MathSciNet  Google Scholar 

  9. V. Esposito, On the well posedness of the Cauchy problem for a class of hyperbolic operators with double characteristics. Ricerche Mat. 49, 221–239 (2000)

    MathSciNet  MATH  Google Scholar 

  10. M. Gevrey, Sur la nature analytiques des solutions des équations aux dérivées partielles. Ann. Sc. Norm. super. 35, 129–189 (1917)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Dover Publications, New York, 1953)

    MATH  Google Scholar 

  12. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Grundlehren Math. Wiss., vol. 274 (Springer, Berlin, 1983)

    Google Scholar 

  13. L. Hörmander, Quadratic hyperbolic operators, in Microlocal Analysis and Applications, ed. by L. Cattabriga, L. Rodino (Springer, Berlin, 1989), pp. 118–160

    Google Scholar 

  14. V.Ja. Ivrii, Correctness of the Cauchy problem in Gevrey classes for nonstrictly hyperbolic operators. Uspehi Math. USSR Sbornik 25, 365–387 (1975)

    Article  Google Scholar 

  15. P.D. Lax, Asymptotic solutions of oscillatory initial value problem. Duke Math. J. 24, 627–646 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Melrose, The Cauchy problem and propagation of singularities, in Seminar on Nonlinear Partial Differential Equations, Papers from the Seminar, Berkeley, CA, 1983, ed. by S.S.Chern. Mathematical Sciences Research Institute Publications, vol. 2 (Springer, Berlin, 1984), pp. 185–201

    Google Scholar 

  17. S. Mizohata, The Theory of Partial Differential Equations (Cambridge University Press, Cambridge, 1973)

    MATH  Google Scholar 

  18. T. Nishitani, On the Cauchy problem for non-effectively hyperbolic operators, the Ivrii-Petkov-Hörmander condition and the Gevrey well posedness. Serdica Math. J. 34, 155–178 (2008)

    MathSciNet  MATH  Google Scholar 

  19. T. Nishitani, On Gevrey well-posedness of the Cauchy problem for some noneffectively hyperbolic operators, in Advances in Phase Space Analysis of PDEs. Progress in Nonlinear Differential Equations and Their Application, vol. 78 (Birkhäuser, Boston, 2009), pp. 217–233

    Google Scholar 

  20. T. Nishitani, A note on zero free regions of the Stokes multipliers for second order ordinary differential equations with cubic polynomial coefficients. Funkcialaj Ekvac. 54, 473–483 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Nishitani, On the Cauchy problem for noneffectively hyperbolic operators, a transition casse, in Studies in Phase Space Analysis with Applications to PDEs, ed. by M. Cicognani, F. Colombini, D. Del Santo (Birkhäuser, Basel, 2013), pp. 259–290

    Chapter  Google Scholar 

  22. T. Nishitani, On the Cauchy problem for hyperbolic operators with double characteristics, a transition case, in Fourier Analysis. Trends in Mathematics (Birkhäuser, Basel, 2014), pp. 311–334

    Google Scholar 

  23. C. Parenti, A. Parmeggiani, On the Cauchy problem for hyperbolic operators with double characteristics, in Evolution Equations of Hyperbolic and Schrödinger Type. Progress in Mathematics, vol. 301 (Birkäuser/Springer, Basel, 2012), pp. 247–266

    Google Scholar 

  24. Y. Sibuya, Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient. North-Holland Mathematical Studies, vol. 18 (Elsevier, Amsterdam, 1975)

    Google Scholar 

  25. D.T. Trinh, On the simpleness of zeros of Stokes multipliers. J. Differ. Equ. 223, 351–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nishitani, T. (2017). Tangent Bicharacteristics and Ill-Posedness. In: Cauchy Problem for Differential Operators with Double Characteristics. Lecture Notes in Mathematics, vol 2202. Springer, Cham. https://doi.org/10.1007/978-3-319-67612-8_6

Download citation

Publish with us

Policies and ethics