Abstract
These lectures describe some classical models of liquid crystals, the relations between them, and the different ways in which these models describe defects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here we consider only the shape of M as being important. More generally we could require the invariance of a vector u = u(x), x ∈ M, of additional molecular variables (such as mass or charge density), defining corresponding isotropy groups \(\tilde{G}_{M} =\{ \mathbf{R} \in O(3): \mathbf{R}M = M,\mathbf{u}(\mathbf{R}\mathbf{x}) = \mathbf{u}(\mathbf{x})\mbox{ for all }\mathbf{x} \in M\},\tilde{G}_{M}^{+} =\{ \mathbf{R} \in SO(3): \mathbf{R}M = M,\mathbf{u}(\mathbf{R}\mathbf{x}) = \mathbf{u}(\mathbf{x})\mbox{ for all }\mathbf{x} \in M\}\).
- 2.
For example, in the case of the ellipsoid of revolution \(M =\{ \mathbf{x} = (x_{1},x_{2},x_{3}): \frac{x_{1}^{2}} {a^{2}} + \frac{x_{2}^{2}+x_{3}^{2}} {b^{2}} <1\}\), with semimajor axes a > 0, b > 0, a ≠ b, if \(\hat{\mathbf{R}}M = M\) then \(\hat{\mathbf{R}}\partial M = \partial M\), and since \(\vert \pm \hat{\mathbf{R}}a\mathbf{e}_{1}\vert = a\) and the only points of ∂M distant a from 0 are ± a e 1 we have that \(\hat{\mathbf{R}}\mathbf{e}_{1} = \pm \mathbf{e}_{1}\). Conversely, if \(\hat{\mathbf{R}}\mathbf{e}_{1} = \pm \mathbf{e}_{1}\) then it is easily checked that \(\hat{\mathbf{R}}M = M\).
- 3.
Similarly, for a sixth order polynomial ψ B is a linear combination of 1, tr Q 2, tr Q 3, tr Q 2tr Q 3, (tr Q 2)3, (tr Q 3)2; see, for example, [47].
- 4.
Since the L i are not dimensionless, some care is required in interpreting what it means for them to be small (see Gartland [44]).
- 5.
A related, and even harder, open problem is that of proving that minimizers \(\mathbf{y}^{{\ast}}:\varOmega \rightarrow \mathbb{R}^{3}\) of the elastic energy I(y) = ∫ Ω W(∇y(x)) d x in nonlinear elasticity under the non-interpenetration hypothesis W(A) → ∞ as detA → 0+ satisfy det∇y ∗(x) ≥ δ > 0 a.e. in Ω.
- 6.
This can be verified by separately estimating ∇n in neighbourhoods of the points where it is not smooth, namely x = 0, points on a cube edge, and corners of the cube.
References
L. Ambrosio, E.G. Virga, A boundary value problem for nematic liquid crystals with a variable degree of orientation. Arch. Ration. Mech. Anal. 114(4), 335–347 (1991)
L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2000)
D.R. Anderson, D.E. Carlson, E. Fried, A continuum-mechanical theory for nematic elastomers. J. Elast. 56(1), 33–58 (1999/2000)
J.M. Ball, Mathematics of liquid crystals. Mol. Cryst. Liq. Cryst. 647, 1–27 (2017)
J.M. Ball, S.J. Bedford, Surface discontinuities of the director in liquid crystal theory (in preparation)
J.M. Ball, S.J. Bedford, Discontinuous order parameters in liquid crystal theories. Mol. Cryst. Liq. Cryst. 612(1), 1–23 (2015)
J.M. Ball, A. Majumdar, Passage from the mean-field Maier-Saupe to the continuum Landau - de Gennes theory for nematic liquid crystals (in preparation)
J.M. Ball, A. Majumdar, Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525, 1–11 (2010)
J.M. Ball, V.J. Mizel, Singular minimizers for regular one-dimensional problems in the calculus of variations. Bull. Am. Math. Soc. 11, 143–146 (1984)
J.M. Ball, V.J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equations. Arch. Ration. Mech. Anal. 90, 325–388 (1985)
J.M. Ball, A. Zarnescu, Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202, 493–535 (2011)
J.M. Ball, A. Zarnescu, Partial regularity and smooth topology-preserving approximations of rough domains. Calc. Var. Partial Differ. Equ. 56(1), 13 (2017)
R. Barberi, F. Ciuchi, G.E. Durand, M. Iovane, D. Sikharulidze, A.M. Sonnet, E.G. Virga, Electric field induced order reconstruction in a nematic cell. Eur. Phys. J. E 13, 61–71 (2004)
G. Barbero, R. Barberi, Critical thickness of a hybrid aligned nematic liquid crystal cell. J. Phys. 44, 609–616 (1983)
P. Bauman, D. Phillips, Regularity and the behavior of eigenvalues for minimizers of a constrained Q-tensor energy for liquid crystals. Calc. Var. Partial Differ. Equ. 55(4), Paper No. 81, 22 (2016)
P. Bauman, J. Park, D. Phillips, Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205(3), 795–826 (2012)
S.J. Bedford, Calculus of variations and its application to liquid crystals. Ph.D. thesis, Mathematical Institute, University of Oxford (2015)
S.J. Bedford, Function spaces for liquid crystals. Arch. Ration. Mech. Anal. 219(2), 937–984 (2016)
D.W. Berreman, S. Meiboom, Tensor representation of Oseen-Frank strain energy in uniaxial cholesterics. Phys. Rev. A 30(4), 1955 (1984)
F. Bethuel, D. Chiron, Some questions related to the lifting problem in Sobolev spaces, in Perspectives in Nonlinear Partial Differential Equations. Contemporary Mathematics (American Mathematical Society, Providence, RI, 2007), pp. 125–152
K. Bhattacharya, Microstructure of Martensite (Oxford University Press, Oxford, 2003)
P. Biscari, G.G. Peroli, A hierarchy of defects in biaxial nematics. Commun. Math. Phys. 186(2), 381–392 (1997)
F. Bisi, E.C. Gartland, R. Rosso, E.G. Virga, Order reconstruction in frustrated nematic twist cells. Phys. Rev. E 68, 021707 (2003)
P. Bladon, E.M. Terentjev, M. Warner, Transitions and instabilities in liquid crystal elastomers. Phys. Rev. E 47, R3838–3839 (1993)
B. Bourdin, G.A. Francfort, J.-J. Marigo, The variational approach to fracture. J. Elast. 91, 5–148 (2008)
J. Bourgain, H. Brezis, P. Mironescu, Lifting in Sobolev spaces. J. Anal. Math. 80, 37–86 (2000)
H. Brezis, J.-M. Coron, E.H. Lieb, Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705 (1986)
M.C. Calderer, C.A. Garavito Garzón, B. Yan, A Landau–de Gennes theory of liquid crystal elastomers. Discrete Contin. Dyn. Syst. Ser. S 8(2), 283–302 (2015)
G. Canevari, Line defects in the small elastic constant limit of a three-dimensional Landau-de Gennes model. Arch. Ration. Mech. Anal. 223, 1–86 (2016)
G. Carbone, G. Lombardo, R. Barberi, Mechanically induced biaxial transition in a nanoconfined nematic liquid crystal with a topological defect. Phys. Rev. Lett. 103, 167801 (2009)
R. Cohen, M. Taylor, Weak stability of the map x∕ | x | for liquid crystal functionals. Commun. Partial Differ. Equ. 15(5), 675–692 (1990)
D. Coursault, B.H. Ibrahim, L. Pelliser, B. Zappone, A. de Martino, E. Lacaze, B. Gallas, Modeling the optical properties of self-organized arrays of liquid crystal defects. Opt. Express 22, 023182 (2014)
D. Coursault, B. Zappone, A. Coati, A. Boulaoued, L. Pelliser, D. Limagne, N. Boudet, B.H. Ibrahim, A. De Martino, M. Alba et al., Self-organized arrays of dislocations in thin smectic liquid crystal films. Soft Matter 12(3), 678–688 (2016)
T.A. Davis, E.C. Gartland Jr., Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35(1), 336–362 (1998)
P.G. de Gennes, Short range order effects in the isotropic phase of nematics and cholesterics. Mol. Cryst. Liq. Cryst. 12(3), 193–214 (1971)
E. de Miguel, E. Martín del Rio, J.T. Brown, M.P. Allen, Effect of the attractive interactions on the phase behavior of the Gay–Berne liquid crystal model. J. Chem. Phys. 105(10), 4234–4249 (1996)
A. DeSimone, G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161(3), 181–204 (2002)
H.M. Edwards, Galois Theory. Graduate Texts in Mathematics, vol. 101 (Springer, New York, 1984)
J.L. Ericksen, Inequalities in liquid crystal theory. Phys. Fluids (1958–1988) 9(6), 1205–1207 (1966)
J.L. Ericksen, Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1990)
L.C. Evans, O. Kneuss, H. Tran, Partial regularity for minimizers of singular energy functionals, with application to liquid crystal models. Trans. Am. Math. Soc. 368(5), 3389–3413 (2016)
I. Fatkullin V. Slastikov, Critical points of the Onsager functional on a sphere. Nonlinearity 18(6), 2565–2580 (2005)
G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)
E.C. Gartland, Scalings and limits of the Landau-de Gennes model for liquid crystals: a comment on some recent analytical papers (2015). arXiv:1512.08164
E.C. Gartland, S. Mkaddem, On the local instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes free-energy models. Phys. Rev. E. 59, 563–567 (1999)
J. Gay, B. Berne, Modification of the overlap potential to mimic a linear site–site potential. J. Chem. Phys. 74(6), 3316–3319 (1981)
E.F. Gramsbergen, L. Longa, W.H. de Jeu, Landau theory of the nematic-isotropic phase transition. Phys. Rep. 135(4), 195–257 (1986)
R. Hardt, F.-H. Lin, Mappings minimizing the L p norm of the gradient. Commun. Pure Appl. Math. 40(5), 555–588 (1987)
R. Hardt, D. Kinderlehrer, F.-H. Lin, Stable defects of minimizers of constrained variational principles. Ann. Inst. H. Poincaré Anal. Non Linéaire 5(4), 297–322 (1988)
F. Hélein, Minima de la fonctionnelle énergie libre des cristaux liquides. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 565–568 (1987)
D. Henao, A. Majumdar, Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals. SIAM J. Math. Anal. 44(5), 3217–3241 (2012)
D. Henao, A. Majumdar, A. Pisante, Uniaxial versus biaxial character of nematic equilibria in three dimensions. Calc. Var. Partial Differ. Equ. 56(2), 55 (2017)
R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals. Arch. Ration. Mech. Anal. 215(2), 633–673 (2015)
J. Katriel, G.F. Kventsel, G.R. Luckhurst, T.J. Sluckin, Free energies in the Landau and molecular field approaches. Liq. Cryst. 1, 337–355 (1986)
D. Kinderlehrer, B. Ou, Second variation of liquid crystal energy at x∕ | x |. Proc. R. Soc. Lond. Ser. A 437(1900), 475–487 (1992)
M. Kléman, Defects in liquid crystals. Rep. Prog. Phys. 52(5), 555–654 (1989)
S. Kralj, E.G. Virga, Universal fine structure of nematic hedgehogs. J. Phys. A 34(4), 829–838 (2001)
I. Kundler, H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers. Macromol. Rapid Commun. 16, 679–686 (1995)
E. Lacaze, J.-P. Michel, M. Alba, M. Goldmann, Planar anchoring and surface melting in the smectic-A phase. Phys. Rev. E 76, 041702 (2007)
X. Lamy, Some properties of the nematic radial hedgehog in the Landau–de Gennes theory. J. Math. Anal. Appl. 397(2), 586–594 (2013)
X. Lamy, Bifurcation analysis in a frustrated nematic cell. J. Nonlinear Sci. 24, 1197–1230 (2014)
F.-H. Lin, A remark on the map x∕ | x |. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 529–531 (1987)
H. Liu, H. Zhang, P. Zhang, Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential. Commun. Math. Sci. 3(2), 201–218 (2005)
L. Longa, D. Monselesan, H. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liq. Cryst. 2, 769–796 (1987)
G.R. Luckhurst, P.S.J. Simmonds, Computer simulation studies of anisotropic systems. Mol. Phys. 80(2), 233–252 (1993)
A. Majumdar, The radial-hedgehog solution in Landau-de Gennes’ theory for nematic liquid crystals. Eur. J. Appl. Math. 23(1), 61–97 (2012)
A. Majumdar, A. Zarnescu, Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)
L.R. Mead, N. Papanicolaou, Maximum entropy in the problem of moments. J. Math. Phys. 25(8), 2404–2417 (1984)
N.D. Mermin, The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)
J.-P. Michel, E. Lacaze, M. Alba, M. de Boissieu, M. Gailhanou, M. Goldmann, Optical gratings formed in thin smectic films frustrated on a single crystalline substrate. Phys. Rev. E 70, 011709 (2004)
J.-P. Michel, E. Lacaze, M. Goldmann, M. Gailhanou, M. de Boissieu, M. Alba, Structure of smectic defect cores: X-ray study of 8CB liquid crystal ultrathin films. Phys. Rev. Lett. 96, 027803 (2006)
N. Mottram, C. Newton, An introduction to Q-tensor theory (2014). arXiv:1409.3542
L. Nguyen, A. Zarnescu, Refined approximation for minimizers of a Landau-de Gennes energy functional. Calc. Var. Partial Differ. Equ. 47(1–2), 383–432 (2013)
B. Ou, Uniqueness of x∕ | x | as a stable configuration in liquid crystals. J. Geom. Anal. 2(2), 183–194 (1992)
M.R. Pakzad, T. Rivière, Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13(1), 223–257 (2003)
P. Palffy-Muhoray, E.C. Gartland, J.R. Kelly, A new configurational transition in inhomogeneous nematics. Liq. Cryst. 16, 713–718 (1994)
A. Pizzirusso, R. Berardi, L. Muccioli, M. Riccia, C. Zannoni, Predicting surface anchoring: molecular organization across a thin film of 5CB liquid crystal on silicon. Chem. Sci. 3, 573–579 (2012)
A. Poniewierski, T. Sluckin, On the free energy density of non-uniform nematics. Mol. Phys. 55(5), 1113–1127 (1985)
A. Rapini, M. Papoular, Distorsion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois. Le Journal de Physique Colloques 30(C4), C4–54 (1969)
M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni, A molecular level simulation of a twisted nematic cell. Faraday Discuss. 144, 171–185 (2010)
R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970)
K. Schiele, S. Trimper, On the elastic constants of a nematic liquid crystal. Phys. Status Solidi (b) 118(1), 267–274 (1983)
R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)
N. Schopohl, T.J. Sluckin, Defect core structure in nematic liquid crystals. Phys. Rev. Lett. 59(22), 2582 (1987)
T.J. Sluckin, D.A. Dunmur, H. Stegemeyer, Crystals That Flow. Liquid Crystals Series (Taylor & Francis, London, 2004)
G.F. Smith, On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)
I.W. Stewart, The Static and Dynamic Theory of Liquid Crystals (Taylor and Francis, London, 2004)
V. Šverák, X. Yan, A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differ. Equ. 10, 213–221 (2000)
J.M. Taylor, Maximum entropy methods as the bridge between microscopic and macroscopic theory. J. Stat. Phys. 164(6), 1429–1459 (2016)
C. Truesdell, W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik, ed. by S. Flügge, vol. III/3 (Springer, Berlin, 1965)
E.G. Virga, Variational Theories for Liquid Crystals. Applied Mathematics and Mathematical Computation, vol. 8 (Chapman & Hall, London, 1994)
M.A.C. Vollmer, Critical points and bifurcations of the three-dimensional Onsager model for liquid crystals. Arch. Ration. Mech. Anal. 226(2), 851–922 (2017)
J. Wachsmuth, Suspensions of rod-like molecules: the isotropic-nematic phase transition and flow alignment in 2-d. Unpublished Master’s thesis, University of Bonn (2006)
C. Zannoni, Molecular design and computer simulations of novel mesophases. J. Mater. Chem. 11, 2637–2646 (2001)
B. Zappone, E. Lacaze, Surface-frustrated periodic textures of smectic-A liquid crystals on crystalline surfaces. Phys. Rev. E 78, 061704 (2008)
B. Zappone, E. Lacaze, H. Hayeb, M. Goldmann, N. Boudet, P. Barois, M. Alba, Self-ordered arrays of linear defects and virtual singularities in thin smectic-A films. Soft Matter 7, 1161–1167 (2011)
B. Zappone, C. Meyer, L. Bruno, E. Lacaze, Periodic lattices of frustrated focal conic defect domains in smectic liquid crystal films. Soft Matter 8, 4318–4326 (2012)
S. Zhang, I.A. Kinloch, A.H. Windle, Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 6(3), 568–572 (2006). PMID: 16522064
Acknowledgements
This research was supported by EPSRC (GRlJ03466, the Science and Innovation award to the Oxford Centre for Nonlinear PDE EP/E035027/1, and EP/J014494/1), the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement no 291053 and by a Royal Society Wolfson Research Merit Award. I offer warm thanks to Elisabetta Rocca and Eduard Feireisl for organizing such an interesting programme, to the other lecturers and participants for the lively interaction, and to Elvira Mascolo and the CIME staff for the smooth and friendly organization in a beautiful location.
I am indebted to my collaborators Apala Majumdar, Arghir Zarnescu and Stephen Bedford for many discussions related to the material in these notes, and to Apala Majumdar, Epifanio Virga, Claudio Zannoni and Arghir Zarnescu for kindly reading the notes and pointing out various errors and infelicitudes.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Ball, J.M. (2017). Liquid Crystals and Their Defects. In: Feireisl, E., Rocca, E. (eds) Mathematical Thermodynamics of Complex Fluids. Lecture Notes in Mathematics(), vol 2200. Springer, Cham. https://doi.org/10.1007/978-3-319-67600-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-67600-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67599-2
Online ISBN: 978-3-319-67600-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)