Skip to main content

Local Diffusion Versus Random Relocation in Random Walks

  • Conference paper
  • First Online:
ICT Innovations 2017 (ICT Innovations 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 778))

Included in the following conference series:

  • 1152 Accesses

Abstract

We study a class of random walks on graphs with two mechanisms: local diffusion and random relocation. Such mechanisms are common in search algorithms, an example being the PageRank. The rate with which two mechanisms are mixed is called damping factor. It determines the first-passage time, defined as the time required for a walker starting from a source node to find a given target node. We provide bounds on the stationary distribution of random walks. Global mean first-passage time as a function of the damping factor is computed in closed form for a simple example. The results provide new insights on the search engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lovasz, L.: Random walks on graphs: a survey. In: Combinatorics, Paul Erdos in Eighty, vol. 2 (1993)

    Google Scholar 

  2. Noh, J.D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92(11), 118701 (2004)

    Article  Google Scholar 

  3. Burioni, R., Cassi, D.: Random walks on graphs: ideas, techniques and results. J. Phys. A Math. Gen. 38(8), R45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkhout, J., Heidergott, B.F.: Ranking nodes in general networks: a markov multi-chain approach. Discret. Event Dyn. Syst. 1–31 (2017). Special Issue on Performance Analysis and Optimization of Discrete Event Systems

    Google Scholar 

  5. Pedroche, F., García, E., Romance, M., Criado, R.: Sharp estimates for the personalized multiplex pagerank. J. Comput. Appl. Math. (2017, in press)

    Google Scholar 

  6. Pan, J.Y., Yang, H.J., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation discovery. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 653–658. ACM (2004)

    Google Scholar 

  7. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)

    Google Scholar 

  8. Garnerone, S., Zanardi, P., Lidar, D.A.: Adiabatic quantum algorithm for search engine ranking. Phys. Rev. Lett. 108(23), 230506 (2012)

    Article  Google Scholar 

  9. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl Acad. Sci. 105(35), 12763–12768 (2008)

    Article  Google Scholar 

  10. Mooney, B.L., Corrales, L.R., Clark, A.E.: Molecularnetworks: an integrated graph theoretic and data mining tool to explore solvent organization in molecular simulation. J. Comput. Chem. 33(8), 853–860 (2012)

    Article  Google Scholar 

  11. Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., Milham, M.P.: Network centrality in the human functional connectome. Cereb. Cortex 22(8), 1862–1875 (2011)

    Article  Google Scholar 

  12. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gleich, D.F.: Pagerank beyond the web. SIAM Rev. 57(3), 321–363 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jasch, F., Blumen, A.: Target problem on small-world networks. Phys. Rev. E 63(4), 041108 (2001)

    Article  Google Scholar 

  15. Bénichou, O., Loverdo, C., Moreau, M., Voituriez, R.: Intermittent search strategies. Rev. Mod. Phys. 83(1), 81 (2011)

    Article  MATH  Google Scholar 

  16. Tejedor, V., Bénichou, O., Voituriez, R.: Global mean first-passage times of random walks on complex networks. Phys. Rev. E 80(6), 065104 (2009)

    Article  Google Scholar 

  17. Agliari, E., Burioni, R., Manzotti, A.: Effective target arrangement in a deterministic scale-free graph. Phys. Rev. E 82(1), 011118 (2010)

    Article  Google Scholar 

  18. Meyer, B., Agliari, E., Bénichou, O., Voituriez, R.: Exact calculations of first-passage quantities on recursive networks. Phys. Rev. E 85(2), 026113 (2012)

    Article  Google Scholar 

  19. Lin, Y., Julaiti, A., Zhang, Z.: Mean first-passage time for random walks in general graphs with a deep trap. J. Chem. Phys. 137(12), 124104 (2012)

    Article  Google Scholar 

  20. Hwang, S., Lee, D.S., Kahng, B.: First passage time for random walks in heterogeneous networks. Phys. Rev. Lett. 109(8), 088701 (2012)

    Article  Google Scholar 

  21. Wu, B., Zhang, Z.: Controlling the efficiency of trapping in treelike fractals. J. Chem. Phys. 139(2), 024106 (2013)

    Article  Google Scholar 

  22. Yang, Y., Zhang, Z.: Random walks in unweighted and weighted modular scale-free networks with a perfect trap. J. Chem. Phys. 139(23), 234106 (2013)

    Article  Google Scholar 

  23. Fronczak, A., Fronczak, P.: Biased random walks in complex networks: the role of local navigation rules. Phys. Rev. E 80(1), 016107 (2009)

    Article  MathSciNet  Google Scholar 

  24. Bonaventura, M., Nicosia, V., Latora, V.: Characteristic times of biased random walks on complex networks. Phys. Rev. E 89(1), 012803 (2014)

    Article  Google Scholar 

  25. Boldi, P., Santini, M., Vigna, S.: Pagerank: functional dependencies. ACM Trans. Inf. Syst. (TOIS) 27(4), 19 (2009)

    Article  Google Scholar 

  26. Kamvar, S., Haveliwala, T.: The condition number of the pagerank problem. Technical report, Stanford InfoLab (2003)

    Google Scholar 

  27. Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol. 15. Springer Science & Business Media, New York (2003)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank DFG for support through the project “Random search processes, Lévy flights, and random walks on complex networks”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Stojkoski .

Editor information

Editors and Affiliations

Appendix

Appendix

We now assume that 1 is absorbing state/node; then the transition matrix P transforms to

$$\begin{aligned} P = \left[ \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 1-b &{} 0 &{} b \\ c &{} 1-c &{} 0 \end{array} \right] , \end{aligned}$$

and \(P_1\), the matrix of one-step transition probabilities of the (sub)Markov chain on the set \(\{2, 3\}\), is given by

$$\begin{aligned} P_1 = \left[ \begin{array}{cc} 0 &{} b \\ 1-c &{} 0 \end{array} \right] . \end{aligned}$$

The Perron – Frobenius eigenvalue of \(P_1\) is \(\lambda = \sqrt{b(1-c)}<1\) and its normalized eigenvector \(\mathbf {u}\) is

$$\begin{aligned} \mathbf {u}^T = \left( \frac{\lambda - b}{1-c-b}, \frac{1 - c - \lambda }{1-c-b} \right) . \end{aligned}$$

Since the set of transient states \(S = \{2, 3\}\) is irreducible, \(\mathbf {u}\) the (unique) quasi-stationary distribution for the discrete-time Markov chains with one absorbing state and a finite set S of transient states.

The fundamental matrix for the absorbing chain is

$$\begin{aligned} I + P_1 + P_1^2 + \ldots= & {} I \left[ 1+ b(1-c) + b^2(1-c)^2 + \ldots \right] + \\&+ P_1 \left[ 1+ b(1-c) + b^2(1-c)^2 + \ldots \right] \\= & {} \frac{1}{1-b(1-c)} \left[ \begin{array}{cc} 1 &{} b \\ 1-c &{} 1 \end{array} \right] \equiv \left[ \begin{array}{cc} n_{22} &{} n_{23} \\ n_{32} &{} n_{33} \end{array} \right] . \end{aligned}$$

recovering \(m_{21}\) and \(m_{31}\) from the matrix M, that is

$$\begin{aligned} m_{21} = \sum _{k\in S} n_{2k} = \frac{1+b}{1-b(1-c)}, \quad \; m_{31} = \sum _{k \in S} n_{3k} = \frac{2-c}{1-b(1-c)}. \end{aligned}$$

The other elements of the matrix M can be computed in a similar way.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Stojkoski, V., Dimitrova, T., Jovanovski, P., Sokolovska, A., Kocarev, L. (2017). Local Diffusion Versus Random Relocation in Random Walks. In: Trajanov, D., Bakeva, V. (eds) ICT Innovations 2017. ICT Innovations 2017. Communications in Computer and Information Science, vol 778. Springer, Cham. https://doi.org/10.1007/978-3-319-67597-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67597-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67596-1

  • Online ISBN: 978-3-319-67597-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics