Role and Fate of TCTP in Protein Degradative Pathways

  • Michel VidalEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 64)


This chapter focuses on published studies specifically concerning TCTP and its involvement in degradation or stabilization of various proteins, and also in its own degradation in different ways. The first part relates to the inhibition of proteasomal degradation of proteins. This can be achieved by masking ubiquitination sites of specific partners, by favoring ubiquitin E3 ligase degradation, or by regulating proteasome activity. The second part addresses the ability of TCTP to favor degradation of specific proteins through proteasome or macroautophagic pathways. The third part discusses about the different ways by which TCTP has been shown to be degraded.



Brefeldin A sensitivity 5


Chaperone-mediated autophagy




Hypoxia-inducible factor 1α


Histamine releasing factor


Heat shock protein 27


Myeloid cell leukemia 1


Murine double minute 2


Microtubule and mitochondria interacting protein


Mammalian suppressor of yeast Sec4


Mammalian sterile twenty-1


Tobacco histidine kinase-1


Serine/threonine-protein kinase Pim-3




26S proteasome regulatory subunit


Proteasome regulatory particle base subunit


Ubiquitin–proteasome system


Translationally controlled tumor protein


ubiquitin specific protease 3


von Hippel–Lindau protein



This work was supported by grants from the CNRS, the University of Montpellier, and from the Labex LERMIT.

Compliance with Ethics Guidelines

The author declares that he has no conflict of interest with the contents of this chapter.


  1. Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D et al (2012) Reciprocal repression between P53 and TCTP. Nat Med 18(1):91–99CrossRefGoogle Scholar
  2. Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B et al (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112CrossRefPubMedGoogle Scholar
  3. Baudet C, Perret E, Delpech B, Kaghad M, Brachet P, Wion D et al (1998) Differentially expressed genes in C6.9 glioma cells during vitamin D-induced cell death program. Cell Death Differ 5(1):116–125CrossRefPubMedGoogle Scholar
  4. Baylot V, Katsogiannou M, Andrieu C, Taieb D, Acunzo J, Giusiano S et al (2012) Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer. Mol Ther 20(12):2244–2256. Epub 2012/08/16CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ (2009) Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30(4):555–565. Epub 2009/01/27CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW, Russell P, Laing KG et al (2002) The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8(4):478–496CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bommer UA, Heng C, Perrin A, Dash P, Lobov S, Elia A et al (2010) Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses. Oncogene 29(5):763–773CrossRefPubMedGoogle Scholar
  8. Bommer UA, Iadevaia V, Chen J, Knoch B, Engel M, Proud CG (2015) Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal 27(8):1557–1568. Epub 2015/05/06CrossRefPubMedGoogle Scholar
  9. Bonhoure A, Vallentin A, Martin M, Senff-Ribeiro A, Amson A, Telerman A et al (2017) Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur. J. Cell Biol. 96: 83–98Google Scholar
  10. Burgess A, Labbe JC, Vigneron S, Bonneaud N, Strub JM, Van Dorsselaer A et al (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27(42):5554–5566CrossRefPubMedGoogle Scholar
  11. Chan TH, Chen L, Liu M, Hu L, Zheng BJ, Poon VK et al (2012) Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology 55(2):491–505. Epub 2011/09/29CrossRefPubMedGoogle Scholar
  12. Chattopadhyay A, Pinkaew D, Doan HQ, Jacob RB, Verma SK, Friedman H et al (2016) Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice. Sci Rep 6:18701. Epub 2016/01/05CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC et al (2007a) Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res 67(11):5318–5327. Epub 2007/06/05CrossRefPubMedGoogle Scholar
  14. Chen SH, Wu PS, Chou CH, Yan YT, Liu H, Weng SY et al (2007b) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 18(7):2525–2532CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen K, Chen S, Huang C, Cheng H, Zhou R (2013) TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol Cell 105(5):208–218. Epub 2013/02/08CrossRefPubMedGoogle Scholar
  16. Chen K, Huang C, Yuan J, Cheng H, Zhou R (2014) Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells. Mol Biol Evol 31(8):2194–2211. Epub 2014/06/04CrossRefPubMedGoogle Scholar
  17. Cohen M, Stutz F, Belgareh N, Haguenauer-Tsapis R, Dargemont C (2003) Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Nat Cell Biol 5(7):661–667CrossRefPubMedGoogle Scholar
  18. Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, Viale G et al (2008) NUMB controls p53 tumour suppressor activity. Nature 451(7174):76–80CrossRefPubMedGoogle Scholar
  19. Cucchi U, Gianellini LM, De Ponti A, Sola F, Alzani R, Patton V et al (2010) Phosphorylation of TCTP as a marker for polo-like kinase-1 activity in vivo. Anticancer Res 30(12):4973–4985PubMedGoogle Scholar
  20. Cuervo AM, Dice JF (2000) Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 113(Pt 24):4441–4450PubMedGoogle Scholar
  21. Diraison F, Hayward K, Sanders KL, Brozzi F, Lajus S, Hancock J et al (2011) Translationally controlled tumour protein (TCTP) is a novel glucose-regulated protein that is important for survival of pancreatic beta cells. Diabetologia 54(2):368–379. Epub 2010/11/11CrossRefPubMedGoogle Scholar
  22. Fujita T, Felix K, Pinkaew D, Hutadilok-Towatana N, Liu Z, Fujise K (2008) Human fortilin is a molecular target of dihydroartemisinin. FEBS Lett 582(7):1055–1060. Epub 2008/03/08CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271PubMedGoogle Scholar
  24. Gnanasekar M, Dakshinamoorthy G, Ramaswamy K (2009) Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 386(2):333–337CrossRefPubMedPubMedCentralGoogle Scholar
  25. Graidist P, Phongdara A, Fujise K (2004) Antiapoptotic protein partners fortilin and MCL1 independently protect cells from 5-fluorouracil-induced cytotoxicity. J Biol Chem 279(39):40868–40875CrossRefPubMedGoogle Scholar
  26. Guerrero C, Milenkovic T, Przulj N, Kaiser P, Huang L (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci USA 105(36):13333–13338. Epub 2008/09/02CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hong ST, Choi KW (2013) TCTP directly regulates ATM activity to control genome stability and organ development in Drosophila melanogaster. Nat Commun 4:2986. Epub 2013/12/20CrossRefPubMedGoogle Scholar
  28. Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445(7129):785–788CrossRefPubMedGoogle Scholar
  29. Jiao Y, Ge CM, Meng QH, Cao JP, Tong J, Fan SJ (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin 28(7):1045–1056. Epub 2007/06/26CrossRefPubMedGoogle Scholar
  30. Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22(8):407–417CrossRefPubMedPubMedCentralGoogle Scholar
  31. Le TP, Vuong LT, Kim AR, Hsu YC, Choi KW (2016) 14-3-3 Proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun 7:11501. Epub 2016/05/07CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li S, Chen M, Xiong Q, Zhang J, Cui Z, Ge F (2016) Characterization of the translationally controlled tumor protein (TCTP) interactome reveals novel binding partners in human cancer cells. J Proteome Res. Epub 2016/09/09Google Scholar
  33. Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25(8):3117–3126CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liu Z, Wang Y, Gao T, Pan Z, Cheng H, Yang Q et al (2014) CPLM: a database of protein lysine modifications. Nucleic Acids Res 42(Database issue):D531–D536. Epub 2013/11/12CrossRefPubMedGoogle Scholar
  35. Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G et al (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 317(17):2479–2489. Epub 2011/08/02CrossRefPubMedGoogle Scholar
  36. MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269(5224):688–690CrossRefPubMedGoogle Scholar
  37. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24(1):9–23. Epub 2013/12/25CrossRefPubMedGoogle Scholar
  38. Park C, Suh Y, Cuervo AM (2015) Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun 6:6823. Epub 2015/04/17CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rinnerthaler M, Jarolim S, Heeren G, Palle E, Perju S, Klinger H et al (2006) MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta 1757(5–6):631–638CrossRefPubMedGoogle Scholar
  40. Rinnerthaler M, Lejskova R, Grousl T, Stradalova V, Heeren G, Richter K et al (2013) Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. PLoS One 8(10):e77791. Epub 2013/11/10CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L et al (2006) Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98(5):1082–1089. Epub 2006/08/02CrossRefPubMedGoogle Scholar
  42. Roque CG, Wong HH, Lin JQ, Holt CE (2016) Tumor protein Tctp regulates axon development in the embryonic visual system. Development 143(7):1134–1148. Epub 2016/02/24CrossRefPubMedPubMedCentralGoogle Scholar
  43. Subramanian C, Opipari AW Jr, Bian X, Castle VP, Kwok RP (2005) Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 102(13):4842–4847. Epub 2005/03/22CrossRefPubMedPubMedCentralGoogle Scholar
  44. Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15(8):1211–1220CrossRefPubMedGoogle Scholar
  45. Tao JJ, Cao YR, Chen HW, Wei W, Li QT, Ma B et al (2015) Tobacco translationally controlled tumor protein interacts with ethylene receptor tobacco histidine kinase1 and enhances plant growth through promotion of cell proliferation. Plant Physiol 169(1):96–114. Epub 2015/05/06CrossRefPubMedPubMedCentralGoogle Scholar
  46. Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8(8):701–704CrossRefPubMedGoogle Scholar
  47. Thebault S, Agez M, Chi X, Stojko J, Cura V, Telerman SB et al (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci Rep 6:19725. Epub 2016/01/28CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333(1–2):169–174. Epub 1993/10/25CrossRefPubMedGoogle Scholar
  49. Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R et al (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci USA 99(23):14976–14981CrossRefPubMedPubMedCentralGoogle Scholar
  50. Walczak M, Martens S (2013) Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9(3):424–425. Epub 2013/01/17CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M et al (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22(17):6209–6221CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang D, Li F, Weidner D, Mnjoyan ZH, Fujise K (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277(40):37430–37438. Epub 2002/08/01CrossRefPubMedGoogle Scholar
  54. Zhang J, de Toledo SM, Pandey BN, Guo G, Pain D, Li H et al (2012) Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc Natl Acad Sci USA 109(16):E926–E933. Epub 2012/03/28CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang F, Liu B, Wang Z, Yu XJ, Ni QX, Yang WT et al (2013) A novel regulatory mechanism of Pim-3 kinase stability and its involvement in pancreatic cancer progression. Mol Cancer Res MCR 11(12):1508–1520. Epub 2013/10/30CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université MontpellierMontpellierFrance

Personalised recommendations