Skip to main content

Current Understanding of the TCTP Interactome

Part of the Results and Problems in Cell Differentiation book series (RESULTS,volume 64)

Abstract

Evolutionarily conserved and pleiotropic, the translationally controlled tumor protein (TCTP) is a housekeeping protein present in eukaryotic organisms. It plays an important role in regulating many fundamental processes, such as cell proliferation, cell death, immune responses, and apoptosis. As a result of the pioneer work by Adam Telerman and Robert Amson, the critical role of TCTP in tumor reversion was revealed. Moreover, TCTP has emerged as a regulator of cell fate determination and a promising therapeutic target for cancers. The multifaceted action of TCTP depends on its ability to interact with different proteins. Through this interaction network, TCTP regulates diverse physiological and pathological processes in a context-dependent manner. Complete mapping of the entire sets of TCTP protein interactions (interactome) is essential to understand its various cellular functions and to lay the foundation for the rational design of TCTP-based therapeutic approaches. So far, the global profiling of the interacting partners of TCTP has rarely been performed, but many interactions have been identified in small-scale studies in a specific biological system. This chapter, based on information from protein interaction databases and the literature, illustrates current knowledge of the TCTP interactome.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67591-6_5
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-67591-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 5.1

References

  • Acunzo J et al (2014) TCTP as therapeutic target in cancers. Cancer Treat Rev 40:760–769

    CAS  CrossRef  PubMed  Google Scholar 

  • Amson R et al (2013) TPT1/TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol 23:37–46

    CAS  CrossRef  PubMed  Google Scholar 

  • Astanehe A et al (2009) The transcriptional induction of PIK3CA in tumor cells is dependent on the oncoprotein Y-box binding protein-1. Oncogene 28:2406–2418

    CAS  CrossRef  PubMed  Google Scholar 

  • Backman SA et al (2004) Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of pten. Proc Natl Acad Sci USA 101:1725–1730

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Basaki Y et al (2007) Akt-dependent nuclear localization of Y-box-binding protein 1 in acquisition of malignant characteristics by human ovarian cancer cells. Oncogene 26:2736–2746

    CAS  CrossRef  PubMed  Google Scholar 

  • Baylot V et al (2012) Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer. Mol Ther 20:2244–2256

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bazile F et al (2009) Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30:555–565

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36:379–385

    CAS  CrossRef  PubMed  Google Scholar 

  • Bommer UA et al (2015) Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/akt/mTORC1 signalling pathway. Cell Signal 27:1557–1568

    CAS  CrossRef  PubMed  Google Scholar 

  • Bruckner A et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10:2763–2788

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Burgess A et al (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27:5554–5566

    CAS  CrossRef  PubMed  Google Scholar 

  • Chen K et al (2013a) TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol Cell 105:208–218

    CAS  CrossRef  PubMed  Google Scholar 

  • Chen Y et al (2013b) Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol Cell Proteomics 12:2804–2819

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chen K et al (2014) Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells. Mol Biol Evol 31:2194–2211

    CAS  CrossRef  PubMed  Google Scholar 

  • Cheng X et al (2012) Translationally controlled tumor protein (TCTP) downregulates Oct4 expression in mouse pluripotent cells. BMB Rep 45:20–25

    CAS  CrossRef  PubMed  Google Scholar 

  • Christoforou A et al (2016) A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun 7:8992

    CrossRef  PubMed  Google Scholar 

  • Daugaard M et al (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    CAS  CrossRef  PubMed  Google Scholar 

  • Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23:744–755

    CAS  CrossRef  PubMed  Google Scholar 

  • Gachet Y et al (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271

    CAS  PubMed  Google Scholar 

  • Ge F et al (2010) Identification of novel 14-3-3zeta interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK). J Proteome Res 9:5848–5858

    CAS  CrossRef  PubMed  Google Scholar 

  • Ge F et al (2011) Quantitative proteomic analysis of tumor reversion in multiple myeloma cells. J Proteome Res 10:845–855

    CAS  CrossRef  PubMed  Google Scholar 

  • Gu X et al (2014) TCTP promotes glioma cell proliferation in vitro and in vivo via enhanced beta-catenin/TCF-4 transcription. Neuro-Oncology 16:217–227

    CAS  CrossRef  PubMed  Google Scholar 

  • Gullo C et al (2006) The biology of ku and its potential oncogenic role in cancer. Biochim Biophys Acta Rev Cancer 1765:223–234

    CAS  CrossRef  Google Scholar 

  • Havugimana PC et al (2012) A census of human soluble protein complexes. Cell 150:1068–1081

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hsu YC et al (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445:785–788

    CAS  CrossRef  PubMed  Google Scholar 

  • Huang H et al (2015) Poly(ADP-ribose) glycohydrolase silencing down-regulates TCTP and cofilin-1 associated with metastasis in benzo(a)pyrene carcinogenesis. Am J Cancer Res 5:155–167

    CAS  PubMed  Google Scholar 

  • Jaglarz MK et al (2012) Association of TCTP with centrosome and microtubules. Biochem Res Int 2012:541906

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jeon HJ et al (2016) TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis. Biochim Biophys Acta 1863:630–637

    CAS  CrossRef  PubMed  Google Scholar 

  • Johnson TM et al (2008) Plk1 activation by Ste20-like kinase (slk) phosphorylation and polo-box phosphopeptide binding assayed with the substrate translationally controlled tumor protein (TCTP). Biochemistry 47:3688–3696

    CAS  CrossRef  PubMed  Google Scholar 

  • Kaarbo M et al (2013) TCTP is an androgen-regulated gene implicated in prostate cancer. PLoS One 8:e69398

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kobayashi D et al (2014) Translationally controlled tumor protein is a novel biological target for neurofibromatosis type 1-associated tumors. J Biol Chem 289:26314–26326

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Koegl M, Uetz P (2007) Improving yeast two-hybrid screening systems. Brief Funct Genomics Proteomics 6:302–312

    CAS  CrossRef  Google Scholar 

  • Koziol MJ et al (2007) Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol 17:801–807

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kristensen AR et al (2012) A high-throughput approach for measuring temporal changes in the interactome. Nat Methods 9:907–909

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lage K (2014) Protein-protein interactions and genetic diseases: the interactome. Biochim Biophys Acta 1842:1971–1980

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lee C et al (2008) Targeting YB-1 in HER-2 overexpressing breast cancer cells induces apoptosis via the mTOR/STAT3 pathway and suppresses tumor growth in mice. Cancer Res 68:8661–8666

    CAS  CrossRef  PubMed  Google Scholar 

  • Lentze N, Auerbach D (2008) The yeast two-hybrid system and its role in drug discovery. Expert Opin Ther Targets 12:505–515

    CAS  CrossRef  PubMed  Google Scholar 

  • Li S et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Li S et al (2016) Characterization of the translationally controlled tumor protein (TCTP) interactome reveals novel binding partners in human cancer cells. J Proteome Res 15:3741–3751

    CAS  CrossRef  PubMed  Google Scholar 

  • Lievens S et al (2010) Large-scale protein interactome mapping: strategies and opportunities. Expert Rev Proteomics 7:679–690

    CAS  CrossRef  PubMed  Google Scholar 

  • Liu Y et al (2005) Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem 268:45–51

    CAS  CrossRef  PubMed  Google Scholar 

  • Lucibello M et al (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 317:2479–2489

    CAS  CrossRef  PubMed  Google Scholar 

  • Lucibello M et al (2015) Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells. Oncotarget 6:5275–5291

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Macdonald SM et al (1995) Molecular-identification of an ige-dependent histamine-releasing factor. Science 269:688–690

    CAS  CrossRef  PubMed  Google Scholar 

  • Mehta V, Trinkle-Mulcahy L (2016) Recent advances in large-scale protein interactome mapping. F1000Res 5

    Google Scholar 

  • Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34:1181–1188

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Neumann CA et al (2009) Peroxiredoxin 1 and its role in cell signaling. Cell Cycle 8:4072–4078

    CAS  CrossRef  PubMed  Google Scholar 

  • Oikawa K et al (2002) Dioxin stimulates synthesis and secretion of IgE-dependent histamine-releasing factor. Biochem Biophys Res Commun 290:984–987

    CAS  CrossRef  PubMed  Google Scholar 

  • Orsini F et al (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 279:25689–25695

    CAS  CrossRef  PubMed  Google Scholar 

  • Petrasek J, Schwarzerova K (2009) Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol 12:728–734

    CAS  CrossRef  PubMed  Google Scholar 

  • Phizicky E et al (2003) Protein analysis on a proteomic scale. Nature 422:208–215

    CAS  CrossRef  PubMed  Google Scholar 

  • Rajagopala SV (2015) Mapping the protein-protein interactome networks using yeast two-hybrid screens. Adv Exp Med Biol 883:187–214

    CAS  CrossRef  PubMed  Google Scholar 

  • Rho SB et al (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 585:29–35

    CAS  CrossRef  PubMed  Google Scholar 

  • Roque CG et al (2016) Tumor protein Tctp regulates axon development in the embryonic visual system. Development 143(7):1134–1148

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rupec RA et al (1998) Isolation of a hypoxia-induced cDNA with homology to the mammalian growth-related protein p23. Oncol Res 10:69–74

    CAS  PubMed  Google Scholar 

  • Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3:981–983

    CAS  CrossRef  PubMed  Google Scholar 

  • Sinnberg T et al (2012) MAPK and PI3K/AKT mediated YB-1 activation promotes melanoma cell proliferation which is counteracted by an autoregulatory loop. Exp Dermatol 21:265–270

    CAS  CrossRef  PubMed  Google Scholar 

  • Sirois I et al (2011) Caspase-3-dependent export of TCTP: a novel pathway for antiapoptotic intercellular communication. Cell Death Differ 18:549–562

    CAS  CrossRef  PubMed  Google Scholar 

  • Smits AH, Vermeulen M (2016) Characterizing protein-protein interactions using mass spectrometry: challenges and opportunities. Trends Biotechnol 34:825–834

    CAS  CrossRef  PubMed  Google Scholar 

  • Stambolic V et al (1998) Negative regulation of PKB/akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    CAS  CrossRef  PubMed  Google Scholar 

  • Stambolic V et al (2000) High incidence of breast and endometrial neoplasia resembling human cowden syndrome in pten(+/−) mice. Cancer Res 60:3605–3611

    CAS  PubMed  Google Scholar 

  • Stellberger T et al (2010) Improving the yeast two-hybrid system with permutated fusions proteins: the varicella zoster virus interactome. Proteome Sci 8:8

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Susini L et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15:1211–1220

    CAS  CrossRef  PubMed  Google Scholar 

  • Sutherland BW et al (2005) Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene 24:4281–4292

    CAS  CrossRef  PubMed  Google Scholar 

  • Tao SC, Zhu H (2006) Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol 24:1253–1254

    CAS  CrossRef  PubMed  Google Scholar 

  • Tao SC et al (2007) Applications of protein microarray technology. Comb Chem High Throughput Screen 10:706–718

    CAS  CrossRef  PubMed  Google Scholar 

  • Tsai MJ et al (2014) TCTP is essential for beta-cell proliferation and mass expansion during development and beta-cell adaptation in response to insulin resistance. Endocrinology 155:392–404

    CrossRef  PubMed  Google Scholar 

  • Tsarova K et al (2010) Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). FEBS Lett 584:4756–4760

    CAS  CrossRef  PubMed  Google Scholar 

  • Tuynder M et al (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci USA 99:14976–14981

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tuynder M et al (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci USA 101:15364–15369

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wang W et al (2015) The proteomic investigation reveals interaction of mdig protein with the machinery of DNA double-strand break repair. Oncotarget 6:28269–28281

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wu D et al (2012) Upregulation of TCTP expression in human skin squamous cell carcinoma increases tumor cell viability through anti-apoptotic action of the protein. Exp Ther Med 3:437–442

    CAS  CrossRef  PubMed  Google Scholar 

  • Yang L et al (2016) Identification of serum biomarkers for gastric cancer diagnosis using a human proteome microarray. Mol Cell Proteomics 15:614–623

    CAS  CrossRef  PubMed  Google Scholar 

  • Yenofsky R et al (1983) Regulation of messenger-RNA utilization in mouse erythroleukemia-cells induced to differentiate by exposure to dimethylsulfoxide. Mol Cell Biol 3:1197–1203

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Yu H et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2010) Plant protein-protein interaction network and interactome. Curr Genomics 11:40–46

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2012) Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc Natl Acad Sci USA 109:E926–E933

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zheng P et al (2012) QUICK identification and SPR validation of signal transducers and activators of transcription 3 (Stat3) interacting proteins. J Proteome 75:1055–1066

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFA0501304), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB14030202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Li, S., Ge, F. (2017). Current Understanding of the TCTP Interactome. In: Telerman, A., Amson, R. (eds) TCTP/tpt1 - Remodeling Signaling from Stem Cell to Disease. Results and Problems in Cell Differentiation, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-67591-6_5

Download citation