Advertisement

The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation

  • Ulrich-Axel BommerEmail author
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 64)

Abstract

The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.

TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.

Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.

Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.

Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.

Notes

Acknowledgements

Work in my laboratory was supported by project grants from The Wellcome Trust (UK), by a Short-Term Fellowship from the Human Frontier Science Program (Strasbourg) and by small grants from the Cancer Prevention Research Trust (London, UK). I received small grants from the Illawarra Health and Medical Research Institute and from the Graduate School of Medicine, University of Wollongong, NSW, Australia. I wish to thank all friends and colleagues, who contributed to our work.

References

  1. Acunzo J, Baylot V, So A, Rocchi P (2014) TCTP as therapeutic target in cancers. Cancer Treat Rev 40(6):760–769PubMedCrossRefGoogle Scholar
  2. Ambrosio MR, Rocca BJ, Barone A, Onorati M, Mundo L, Crivelli F, Di Nuovo F, De Falco G, del Vecchio MT, Tripodi SA et al (2015) Expression of translationally controlled tumor protein in human kidney and in renal cell carcinoma. Biomed Res Int 2015:730390PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amson R, Kubiak JZ, Van Montagu M, Telerman A (2011) Could TCTP contribute to Armin Braun’s paradigm of tumor reversion in plants? Cell Cycle 10(1):1PubMedCrossRefGoogle Scholar
  4. Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, Colaluca I, Viale G, Rodrigues-Ferreira S, Wynendaele J et al (2012) Reciprocal repression between P53 and TCTP. Nat Med 18(1):91–99CrossRefGoogle Scholar
  5. Amson R, Karp JE, Telerman A (2013) Lessons from tumor reversion for cancer treatment. Curr Opin Oncol 25(1):59–65PubMedCrossRefGoogle Scholar
  6. Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B, Amson R, Telerman A (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112PubMedCrossRefGoogle Scholar
  7. Andree H, Thiele H, Fahling M, Schmidt I, Thiele BJ (2006) Expression of the human TPT1 gene coding for translationally controlled tumor protein (TCTP) is regulated by CREB transcription factors. Gene 380(2):95–103PubMedCrossRefGoogle Scholar
  8. Arcuri F, Papa S, Carducci A, Romagnoli R, Liberatori S, Riparbelli MG, Sanchez J-C, Tosi P, del Vecchio MT (2004) Translationally controlled tumor protein (TCTP) in the human prostate and prostate cancer cells: expression, distribution, and calcium binding activity. Prostate 60(2):130–140PubMedCrossRefGoogle Scholar
  9. Arcuri F, Papa S, Meini A, Carducci A, Romagnoli R, Bianchi L, Riparbelli MG, Sanchez J-C, Palmi M, Tosi P et al (2005) The translationally controlled tumor protein is a novel calcium binding protein of the human placenta and regulates calcium handling in trophoblast cells. Biol Reprod 73(4):745–751PubMedCrossRefGoogle Scholar
  10. Bae SY, Kim HJ, Lee KJ, Lee K (2015) Translationally controlled tumor protein induces epithelial to mesenchymal transition and promotes cell migration, invasion and metastasis. Sci Rep 5:8061PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bae SY, Byun S, Bae SH, Min DS, Woo HA, Lee K (2017) TPT1 (tumor protein, translationally-controlled 1) negatively regulates autophagy through the BECN1 interactome and an MTORC1-mediated pathway. Autophagy 13(5):820–833PubMedCrossRefGoogle Scholar
  12. Bangrak P, Graidist P, Chotigeat W, Phongdara A (2004) Molecular cloning and expression of a mammalian homologue of a translationally controlled tumor protein (TCTP) gene from Penaeus monodon shrimp. J Biotechnol 108(3):219–226PubMedCrossRefGoogle Scholar
  13. Baylot V, Katsogiannou M, Andrieu C, Taieb D, Acunzo J, Giusiano S, Fazli L, Gleave M, Garrido C, Rocchi P (2012) Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer. Mol Ther 20(12):2244–2256PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ (2009) Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30(4):555–565PubMedPubMedCentralCrossRefGoogle Scholar
  15. Berkowitz O, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 20(12):3430–3447PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bhisutthibhan J, Meshnick SR (2001) Immunoprecipitation of [(3)H]dihydroartemisinin translationally controlled tumor protein (TCTP) adducts from Plasmodium falciparum-infected erythrocytes by using anti-TCTP antibodies. Antimicrob Agents Chemother 45(8):2397–2399PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bhisutthibhan J, Pan XQ, Hossler PA, Walker DJ, Yowell CA, Carlton J, Dame JB, Meshnick SR (1998) The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem 273(26):16192–16198PubMedCrossRefGoogle Scholar
  18. Bhisutthibhan J, Philbert MA, Fujioka H, Aikawa M, Meshnick SR (1999) The Plasmodium falciparum translationally controlled tumor protein: subcellular localization and calcium binding. Eur J Cell Biol 78(9):665–670PubMedCrossRefGoogle Scholar
  19. Bohm H, Benndorf R, Gaestel M, Gross B, Nurnberg P, Kraft R, Otto A, Bielka H (1989) The growth-related protein P23 of the Ehrlich ascites tumor: translational control, cloning and primary structure. Biochem Int 19(2):277–286PubMedGoogle Scholar
  20. Bohm H, Gross B, Gaestel M, Bommer UA, Ryffel G, Bielka H (1991) The 5’-untranslated region of p23 mRNA from the Ehrlich ascites tumor is involved in translation control of the growth related protein p23. Biomed Biochim Acta 50(12):1193–1203PubMedGoogle Scholar
  21. Bommer UA (2012) Cellular function and regulation of the translationally controlled tumour protein TCTP. Open Allergy J 5:19–32CrossRefGoogle Scholar
  22. Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36(3):379–385PubMedCrossRefGoogle Scholar
  23. Bommer UA, Lazaris-Karatzas A, De Benedetti A, Nurnberg P, Benndorf R, Bielka H, Sonenberg N (1994) Translational regulation of the mammalian growth-related protein P23: involvement of eIF-4E. Cell Mol Biol Res 40(7-8):633–641PubMedGoogle Scholar
  24. Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW, Russell P, Laing KG, Lee M, Clemens MJ (2002) The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8(4):478–496PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bommer UA, Heng C, Perrin A, Dash P, Lobov S, Elia A, Clemens MJ (2010) Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses. Oncogene 29(5):763–773PubMedCrossRefGoogle Scholar
  26. Bommer UA, Iadevaia V, Chen J, Knoch B, Engel M, Proud CG (2015) Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal 27(8):1557–1568PubMedCrossRefGoogle Scholar
  27. Bommer UA, Vine KL, Puri P, Engel M, Belfiore L, Fildes K, Batterham M, Lochhead A, Aghmesheh M (2017) Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun Signal 15(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bonhoure A, Vallentin A, Martin M, Senff-Ribeiro A, Amson R, Telerman A, Vidal M (2017) Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur J Cell Biol 96(2):83–98PubMedCrossRefGoogle Scholar
  29. Bonnet C, Perret E, Dumont X, Picard A, Caput D, Lenaers G (2000) Identification and transcription control of fission yeast genes repressed by an ammonium starvation growth arrest. Yeast 16(1):23–33PubMedCrossRefGoogle Scholar
  30. Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci U S A 107(37):16384–16389PubMedPubMedCentralCrossRefGoogle Scholar
  31. Budde IK, Lopuhaa CE, de Heer PG, Langdon JM, MacDonald SM, van der Zee JS, Aalberse RC (2002) Lack of correlation between bronchial late allergic reaction to Dermatophagoides pteronyssinus and in vitro immunoglobulin E reactivity to histamine-releasing factor derived from mononuclear cells. Ann Allergy Asthma Immunol 89(6):606–612PubMedCrossRefGoogle Scholar
  32. Burgess A, Labbe JC, Vigneron S, Bonneaud N, Strub JM, Van Dorsselaer A, Lorca T, Castro A (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27(42):5554–5566PubMedCrossRefGoogle Scholar
  33. Calderon-Perez B, Xoconostle-Cazares B, Lira-Carmona R, Hernandez-Rivas R, Ortega-Lopez J, Ruiz-Medrano R (2014) The Plasmodium falciparum translationally controlled tumor protein (TCTP) is incorporated more efficiently into B cells than its human homologue. PLoS One 9(1):e85514PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D et al (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci U S A 100(24):13892–13897PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cao B, Lu Y, Chen G, Lei J (2010) Functional characterization of the translationally controlled tumor protein (TCTP) gene associated with growth and defense response in cabbage. Plant Cell Tissue Org Cult 103:217–226CrossRefGoogle Scholar
  36. Chae J, Choi I, Kim C (2006) Homology modeling and molecular docking study of translationally controlled tumor protein and artemisinin. Arch Pharm Res 29(1):50–58PubMedCrossRefGoogle Scholar
  37. Chan TH, Chen L, Guan XY (2012a) Role of translationally controlled tumor protein in cancer progression. Biochem Res Int 2012:369384PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chan TH, Chen L, Liu M, Hu L, Zheng BJ, Poon VK, Huang P, Yuan YF, Huang JD, Yang J et al (2012b) Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology 55(2):491–505PubMedCrossRefGoogle Scholar
  39. Chattopadhyay A, Pinkaew D, Doan HQ, Jacob RB, Verma SK, Friedman H, Peterson AC, Kuyumcu-Martinez MN, McDougal OM, Fujise K (2016) Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice. Sci Rep 6:18701PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chen SH, Wu P-S, Chou C-H, Yan Y-T, Liu H, Weng S-Y, Yang-Yen H-F (2007a) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 18(7):2525–2532Google Scholar
  41. Chen Z, Zhang H, Yang H, Huang X, Zhang X, Zhang P (2007b) The expression of AmphiTCTP, a TCTP orthologous gene in amphioxus related to the development of notochord and somites. Comp Biochem Physiol B Biochem Mol Biol 147(3):460–465Google Scholar
  42. Chen Y, Fujita T, Zhang D, Doan H, Pinkaew D, Liu Z, Wu J, Koide Y, Chiu A, Lin CC et al (2011) Physical and functional antagonism between tumor suppressor protein p53 and fortilin, an anti-apoptotic protein. J Biol Chem 286:32575–32585PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chen K, Chen S, Huang C, Cheng H, Zhou R (2013a) TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol Cell 105(5):208–218Google Scholar
  44. Chen W, Wang H, Tao S, Zheng Y, Wu W, Lian F, Jaramillo M, Fang D, Zhang DD (2013b) Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 12(14):2321–2328Google Scholar
  45. Chen K, Huang C, Yuan J, Cheng H, Zhou R (2014a) Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells. Mol Biol Evol 31(8):2194–2211Google Scholar
  46. Chen Y, Chen X, Wang H, Bao Y, Zhang W (2014b) Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 12:33Google Scholar
  47. Chen C, Deng Y, Hua M, Xi Q, Liu R, Yang S, Liu J, Zhong J, Tang M, Lu S et al (2015) Expression and clinical role of TCTP in epithelial ovarian cancer. J Mol Histol 46(2):145–156PubMedCrossRefGoogle Scholar
  48. Cheng X, Li J, Deng J, Li Z, Meng S, Wang H (2012) Translationally controlled tumor protein (TCTP) downregulates Oct4 expression in mouse pluripotent cells. BMB Rep 45(1):20–25PubMedCrossRefGoogle Scholar
  49. Chitpatima ST, Makrides S, Bandyopadhyay R, Brawerman G (1988) Nucleotide sequence of a major messenger RNA for a 21 kilodalton polypeptide that is under translational control in mouse tumor cells. Nucleic Acids Res 16(5):2350PubMedPubMedCentralCrossRefGoogle Scholar
  50. Cho Y, Maeng J, Ryu J, Shin H, Kim M, Oh GT, Lee MY, Lee K (2012) Hypertension resulting from overexpression of translationally controlled tumor protein increases the severity of atherosclerosis in apolipoprotein E knock-out mice. Transgenic Res 21(6):1245–1254PubMedCrossRefGoogle Scholar
  51. Choi S, Min HJ, Kim M, Hwang ES, Lee K (2009) Proton pump inhibitors exert anti-allergic effects by reducing TCTP secretion. PLoS One 4(6):e5732PubMedPubMedCentralCrossRefGoogle Scholar
  52. Chou M, Xia C, Feng Z, Sun Y, Zhang D, Zhang M, Wang L, Wei G (2016) A translationally controlled tumor protein gene Rpf41 is required for the nodulation of Robinia pseudoacacia. Plant Mol Biol 90(4-5):389–402PubMedCrossRefGoogle Scholar
  53. Chu ZH, Liu L, Zheng CX, Lai W, Li SF, Wu H, Zeng YJ, Zhao HY, Guan YF (2011) Proteomic analysis identifies translationally controlled tumor protein as a mediator of phosphatase of regenerating liver-3-promoted proliferation, migration and invasion in human colon cancer cells. Chin Med J 124(22):3778–3785PubMedGoogle Scholar
  54. Chuang WL, Lin PY, Lin HC, Chen YL (2016) The apoptotic effect of ursolic acid on SK-Hep-1 cells is regulated by the PI3K/Akt, p38 and JNK MAPK signaling pathways. Molecules 21(4):460PubMedCrossRefGoogle Scholar
  55. Chung S, Kim M, Choi W, Chung J, Lee K (2000) Expression of translationally controlled tumor protein mRNA in human colon cancer. Cancer Lett 156(2):185–190PubMedCrossRefGoogle Scholar
  56. Clemens MJ, Bommer UA (1999) Translational control: the cancer connection. Int J Biochem Cell Biol 31(1):1–23PubMedCrossRefGoogle Scholar
  57. Cucchi U, Gianellini LM, De Ponti A, Sola F, Alzani R, Patton V, Pezzoni A, Troiani S, Saccardo MB, Rizzi S et al (2010) Phosphorylation of TCTP as a marker for polo-like kinase-1 activity in vivo. Anticancer Res 30(12):4973–4985PubMedGoogle Scholar
  58. de Carvalho M, Acencio ML, AVN L, de Araujo LM, de Lara Campos Arcuri M, do Nascimento LC, Maia IG (2017) Impacts of the overexpression of a tomato translationally controlled tumor protein (TCTP) in tobacco revealed by phenotypic and transcriptomic analysis. Plant Cell Rep 36(6):887–900PubMedCrossRefGoogle Scholar
  59. Deng S-S, Xing T-Y, Zhou H-Y, Xiong R-H, Lu Y-G, Wen B, Liu S-Q, Yang H-J (2006) Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genomics Proteomics Bioinformatics 4(3):165–172PubMedPubMedCentralCrossRefGoogle Scholar
  60. Deng Z, Chen J, Leclercq J, Zhou Z, Liu C, Liu H, Yang H, Montoro P, Xia Z, Li D (2016) Expression profiles, characterization and function of HbTCTP in rubber tree (Hevea brasiliensis). Front Plant Sci 7:789PubMedPubMedCentralGoogle Scholar
  61. Diraison F, Hayward K, Sanders KL, Brozzi F, Lajus S, Hancock J, Francis JE, Ainscow E, Bommer UA, Molnar E et al (2011) Translationally controlled tumour protein (TCTP) is a novel glucose-regulated protein that is important for survival of pancreatic beta cells. Diabetologia 54(2):368–379PubMedCrossRefGoogle Scholar
  62. Dong X, Yang B, Li Y, Zhong C, Ding J (2009) Molecular basis of the acceleration of the GDP-GTP exchange of human ras homolog enriched in brain by human translationally controlled tumor protein. J Biol Chem 284(35):23754–23764PubMedPubMedCentralCrossRefGoogle Scholar
  63. Efferth T (2005) Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy. Drug Resist Updat 8(1–2):85–97PubMedCrossRefGoogle Scholar
  64. Efferth T (2006) Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targets 7(4):407–421PubMedCrossRefGoogle Scholar
  65. Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54(393):2745–2756PubMedCrossRefGoogle Scholar
  66. Fadeel B, Ottosson A, Pervaiz S (2008) Big wheel keeps on turning: apoptosome regulation and its role in chemoresistance. Cell Death Differ 15(3):443–452PubMedCrossRefGoogle Scholar
  67. Feng Y, Liu D, Yao H, Wang J (2007a) Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Arch Biochem Biophys 467(1):48–57Google Scholar
  68. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ (2007b) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67(7):3043–3053Google Scholar
  69. Fiucci G, Lespagnol A, Stumptner-Cuvelette P, Beaucourt S, Duflaut D, Susini L, Amson R, Telerman A (2003) Genomic organization and expression of mouse Tpt1 gene. Genomics 81(6):570–578PubMedCrossRefGoogle Scholar
  70. Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ (2006) Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 20(10):1294–1307PubMedPubMedCentralCrossRefGoogle Scholar
  71. Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4(3):793–811PubMedCrossRefGoogle Scholar
  72. Fritsch RM, Schneider G, Saur D, Scheibel M, Schmid RM (2007) Translational repression of MCL-1 couples stress-induced eIF2 alpha phosphorylation to mitochondrial apoptosis initiation. J Biol Chem 282(31):22551–22562PubMedCrossRefGoogle Scholar
  73. Fujita T, Felix K, Pinkaew D, Hutadilok-Towatana N, Liu Z, Fujise K (2008) Human fortilin is a molecular target of dihydroartemisinin. FEBS Lett 582(7):1055–1060PubMedPubMedCentralCrossRefGoogle Scholar
  74. Funston G, Goh W, Wei SJ, Tng QS, Brown C, Jiah Tong L, Verma C, Lane D, Ghadessy F (2012) Binding of translationally controlled tumour protein to the N-terminal domain of HDM2 is inhibited by nutlin-3. PLoS One 7(8):e42642PubMedPubMedCentralCrossRefGoogle Scholar
  75. Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271PubMedGoogle Scholar
  76. Gaken J, Mohamedali AM, Jiang J, Malik F, Stangl D, Smith AE, Chronis C, Kulasekararaj AG, Thomas NS, Farzaneh F et al (2012) A functional assay for microRNA target identification and validation. Nucleic Acids Res 40(10):e75PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ge F, Zhang L, Tao SC, Kitazato K, Zhang ZP, Zhang XE, Bi LJ (2011) Quantitative proteomic analysis of tumor reversion in multiple myeloma cells. J Proteome Res 10(2):845–855PubMedCrossRefGoogle Scholar
  78. Gnanasekar M, Ramaswamy K (2007) Translationally controlled tumor protein of Brugia malayi functions as an antioxidant protein. Parasitol Res 101(6):1533–1540PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gnanasekar M, Rao KVN, Chen L, Narayanan RB, Geetha M, Scott AL, Ramaswamy K, Kaliraj P (2002) Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 121(1):107–118PubMedCrossRefGoogle Scholar
  80. Gnanasekar M, Dakshinamoorthy G, Ramaswamy K (2009) Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 386(2):333–337PubMedPubMedCentralCrossRefGoogle Scholar
  81. Goodman CA, Coenen AM, Frey JW, You JS, Barker RG, Frankish BP, Murphy RM, Hornberger TA (2017) Insights into the role and regulation of TCTP in skeletal muscle. Oncotarget 8(12):18754–18772PubMedGoogle Scholar
  82. Graidist P, Phongdara A, Fujise K (2004) Antiapoptotic protein partners fortilin and MCL1 independently protect cells from 5-fluorouracil-induced cytotoxicity. J Biol Chem 279(39):40868–40875PubMedCrossRefGoogle Scholar
  83. Graidist P, Yazawa M, Tonganunt M, Nakatomi A, Lin CC, Chang JY, Phongdara A, Fujise K (2007) Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochem J 408(2):181–191PubMedPubMedCentralCrossRefGoogle Scholar
  84. Gremski LH, Trevisan-Silva D, Ferrer VP, Matsubara FH, Meissner GO, Wille AC, Vuitika L, Dias-Lopes C, Ullah A, de Moraes FR et al (2014) Recent advances in the understanding of brown spider venoms: from the biology of spiders to the molecular mechanisms of toxins. Toxicon 83:91–120PubMedCrossRefGoogle Scholar
  85. Gross B, Gaestel M, Bohm H, Bielka H (1989) cDNA sequence coding for a translationally controlled human tumor protein. Nucleic Acids Res 17(20):8367PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gu X, Yao L, Ma G, Cui L, Li Y, Liang W, Zhao B, Li K (2014) TCTP promotes glioma cell proliferation in vitro and in vivo via enhanced beta-catenin/TCF-4 transcription. Neuro-Oncology 16(2):217–227PubMedCrossRefGoogle Scholar
  87. Guillaume E, Pineau C, Evrard B, Dupaix A, Moertz E, Sanchez JC, Hochstrasser DF, Jegou B (2001) Cellular distribution of translationally controlled tumor protein in rat and human testes. Proteomics 1(7):880–889PubMedCrossRefGoogle Scholar
  88. Gutierrez-Galeano DF, Toscano-Morales R, Calderon-Perez B, Xoconostle-Cazares B, Ruiz-Medrano R (2014) Structural divergence of plant TCTPs. Front Plant Sci 5:361PubMedPubMedCentralGoogle Scholar
  89. Haghighat NG, Ruben L (1992) Purification of novel calcium binding proteins from Trypanosoma brucei: properties of 22-, 24- and 38-kilodalton proteins. Mol Biochem Parasitol 51(1):99–110PubMedCrossRefGoogle Scholar
  90. Hao S, Qin Y, Yin S, He J, He D, Wang C (2016) Serum translationally controlled tumor protein is involved in rat liver regeneration after hepatectomy. Hepatol Res 46(13):1392–1401PubMedCrossRefGoogle Scholar
  91. He S, Huang Y, Wang Y, Tang J, Song Y, Yu X, Ma J, Wang S, Yin H, Li Q et al (2015) Histamine-releasing factor/translationally controlled tumor protein plays a role in induced cell adhesion, apoptosis resistance and chemoresistance in non-Hodgkin lymphomas. Leuk Lymphoma 56(7):2153–2161PubMedCrossRefGoogle Scholar
  92. Hinojosa-Moya J, Xoconostle-Cazares B, Piedra-Ibarra E, Mendez-Tenorio A, Lucas WJ, Ruiz-Medrano R (2008) Phylogenetic and structural analysis of translationally controlled tumor proteins. J Mol Evol 66(5):472–483PubMedCrossRefGoogle Scholar
  93. Hoepflinger MC, Reitsamer J, Geretschlaeger AM, Mehlmer N, Tenhaken R (2013) The effect of translationally controlled tumour protein (TCTP) on programmed cell death in plants. BMC Plant Biol 13:135PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hong ST, Choi KW (2013) TCTP directly regulates ATM activity to control genome stability and organ development in Drosophila melanogaster. Nat Commun 4:2986PubMedCrossRefGoogle Scholar
  95. Hong ST, Choi KW (2016) Antagonistic roles of Drosophila Tctp and Brahma in chromatin remodelling and stabilizing repeated sequences. Nat Commun 7:12988PubMedPubMedCentralCrossRefGoogle Scholar
  96. Hsu Y-C, Chern JJ, Cai Y, Liu M, Choi K-W (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445(7129):785–788PubMedCrossRefGoogle Scholar
  97. Hu C, Wang F, Ma S, Li X, Song L, Hua X, Xia Q (2015) Suppression of intestinal immunity through silencing of TCTP by RNAi in transgenic silkworm, Bombyx mori. Gene 574(1):82–87PubMedCrossRefGoogle Scholar
  98. Jaglarz MK, Bazile F, Laskowska K, Polanski Z, Chesnel F, Borsuk E, Kloc M, Kubiak JZ (2012) Association of TCTP with centrosome and microtubules. Biochem Res Int 2012:541906PubMedPubMedCentralCrossRefGoogle Scholar
  99. Jeon HJ, You SY, Park YS, Chang JW, Kim JS, Oh JS (2016) TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis. Biochim Biophys Acta 1863(4):630–637PubMedCrossRefGoogle Scholar
  100. Jia Z, Wang M, Yue F, Wang X, Wang L, Song L (2017) The immunomodulation of a maternal translationally controlled tumor protein (TCTP) in Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 60:141–149PubMedCrossRefGoogle Scholar
  101. Jin H, Zhang X, Su J, Teng Y, Ren H, Yang L (2015) RNA interference mediated knockdown of translationally controlled tumor protein induces apoptosis, and inhibits growth and invasion in glioma cells. Mol Med Rep 12(5):6617–6625PubMedPubMedCentralCrossRefGoogle Scholar
  102. Johansson H, Simonsson S (2010) Core transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination. Aging (Albany, NY) 2(11):815–822CrossRefGoogle Scholar
  103. Johansson H, Vizlin-Hodzic D, Simonsson T, Simonsson S (2010a) Translationally controlled tumor protein interacts with nucleophosmin during mitosis in ES cells. Cell Cycle 9(11):2160–2169PubMedCrossRefGoogle Scholar
  104. Johansson H, Svensson F, Runnberg R, Simonsson T, Simonsson S (2010b) Phosphorylated nucleolin interacts with translationally controlled tumor protein during mitosis and with Oct4 during interphase in ES cells. PLoS One 5(10):e13678PubMedPubMedCentralCrossRefGoogle Scholar
  105. Jung J, Kim M, Kim M-J, Kim J, Moon J, Lim J-S, Kim M, Lee K (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na,K-ATPase alpha subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279(48):49868–49875PubMedCrossRefGoogle Scholar
  106. Jung J, Kim HY, Kim M, Sohn K, Lee K (2011) Translationally controlled tumor protein induces human breast epithelial cell transformation through the activation of Src. Oncogene 30(19):2264–2274PubMedCrossRefGoogle Scholar
  107. Jung J, Kim HY, Maeng J, Kim M, Shin DH, Lee K (2014) Interaction of translationally controlled tumor protein with Apaf-1 is involved in the development of chemoresistance in HeLa cells. BMC Cancer 14:165PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kaarbo M, Storm ML, Qu S, Waehre H, Risberg B, Danielsen HE, Saatcioglu F (2013) TCTP is an androgen-regulated gene implicated in prostate cancer. PLoS One 8(7):e69398PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kadioglu O, Efferth T (2016) Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells. Investig New Drugs 34(4):515–521CrossRefGoogle Scholar
  110. Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, Rho SB (2012) Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 17(9):989–997PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kashiwakura JC, Ando T, Matsumoto K, Kimura M, Kitaura J, Matho MH, Zajonc DM, Ozeki T, Ra C, MacDonald SM et al (2012) Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy. J Clin Invest 122(1):218–228PubMedCrossRefGoogle Scholar
  112. Kawakami T, Ando T, Kawakami Y (2012) HRF-interacting molecules. Open Allergy J 5:41–46CrossRefGoogle Scholar
  113. Kim M, Jung Y, Lee K, Kim C (2000) Identification of the calcium binding sites in translationally controlled tumor protein. Arch Pharm Res 23(6):633–636PubMedCrossRefGoogle Scholar
  114. Kim SH, Cairns N, Fountoulakisc M, Lubec G (2001) Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer’s disease. Neurosci Lett 300(1):41–44PubMedCrossRefGoogle Scholar
  115. Kim M-J, Kwon J-S, Suh SH, Suh J-K, Jung J, Lee S-N, Kim Y-H, Cho M-C, Oh GT, Lee K (2008a) Transgenic overexpression of translationally controlled tumor protein induces systemichypertension via repression of Na+, K+-ATPase. J Mol Cell Cardiol 44(1):151–159Google Scholar
  116. Kim JE, Koo KH, Kim YH, Sohn J, Park YG (2008b) Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Exp Mol Med 40(6):709–720Google Scholar
  117. Kim M, Min HJ, Won HY, Park H, Lee JC, Park HW, Chung J, Hwang ES, Lee K (2009a) Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity. PLoS One 4(7):e6464PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kim M, Jung J, Lee K (2009b) Roles of ERK, PI3 kinase, and PLC-gamma pathways induced by overexpression of translationally controlled tumor protein in HeLa cells. Arch Biochem Biophys 485(1):82–87PubMedCrossRefGoogle Scholar
  119. Kim M, Chung J, Lee C, Jung J, Kwon Y, Lee K (2011) A peptide binding to dimerized translationally controlled tumor protein modulates allergic reactions. J Mol Med (Berl) 89(6):603–610CrossRefGoogle Scholar
  120. Kim YM, Han YJ, Hwang OJ, Lee SS, Shin AY, Kim SY, Kim JI (2012a) Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 33(6):617–626Google Scholar
  121. Kim DK, Nam BY, Li JJ, Park JT, Lee SH, Kim DH, Kim JY, Kang HY, Han SH, Yoo TH et al (2012b) Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes. Diabetologia 55(4):1205–1217Google Scholar
  122. Kim M, Maeng J, Lee K (2013a) Dimerization of TCTP and its clinical implications for allergy. Biochimie 95(4):659–666PubMedCrossRefGoogle Scholar
  123. Kim M, Jin YB, Lee K, Lee YS (2013b) A new antiallergic agent that binds to dimerized translationally controlled tumor protein and inhibits allergic symptoms is nontoxic. Hum Exp Toxicol 32(11):1119–1125PubMedCrossRefGoogle Scholar
  124. Kobayashi D, Hirayama M, Komohara Y, Mizuguchi S, Wilson Morifuji M, Ihn H, Takeya M, Kuramochi A, Araki N (2014) Translationally controlled tumor protein is a novel biological target for neurofibromatosis type 1 (NF1)-associated tumors. J Biol Chem 289(38):26314–26326PubMedPubMedCentralCrossRefGoogle Scholar
  125. Koide Y, Kiyota T, Tonganunt M, Pinkaew D, Liu Z, Kato Y, Hutadilok-Towatana N, Phongdara A, Fujise K (2009) Embryonic lethality of fortilin-null mutant mice by BMP-pathway overactivation. Biochim Biophys Acta 1790(5):326–338PubMedPubMedCentralCrossRefGoogle Scholar
  126. Koziol MJ, Gurdon JB (2012) TCTP in development and cancer. Biochem Res Int 2012:105203PubMedPubMedCentralCrossRefGoogle Scholar
  127. Koziol MJ, Garrett N, Gurdon JB (2007) Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol 17(9):801–807PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kubiak JZ, Bazile F, Pascal A, Richard-Parpaillon L, Polanski Z, Ciemerych MA, Chesnel F (2008) Temporal regulation of embryonic M-phases. Folia Histochem Cytobiol 46(1):5–9PubMedCrossRefGoogle Scholar
  129. Kuramitsu Y, Nakamura K (2006) Proteomic analysis of cancer tissues: shedding light on carcinogenesis and possible biomarkers. Proteomics 6(20):5650–5661PubMedCrossRefGoogle Scholar
  130. Langdon JM, Vonakis BM, MacDonald SM (2004) Identification of the interaction between the human recombinant histamine releasing factor/translationally controlled tumor protein and elongation factor-1 delta (also known as eElongation factor-1B beta). Biochim Biophys Acta 1688(3):232–236PubMedCrossRefGoogle Scholar
  131. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293PubMedPubMedCentralCrossRefGoogle Scholar
  132. Lavoie JR, Ormiston ML, Perez-Iratxeta C, Courtman DW, Jiang B, Ferrer E, Caruso P, Southwood M, Foster WS, Morrell NW et al (2014) Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. Circulation 129(21):2125–2135PubMedCrossRefGoogle Scholar
  133. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345(6275):544–547PubMedCrossRefGoogle Scholar
  134. Le TP, Vuong LT, Kim AR, Hsu YC, Choi KW (2016) 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun 7:11501PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lee JM, Kusakabe T, Kawaguchi Y, Miyagawa Y, Takahashi M, Mon H, Nho S-K, Koga K (2004) Molecular cloning and characterization of the translationally controlled tumor protein gene in Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 139(1):35–43PubMedCrossRefGoogle Scholar
  136. Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, Vidal M, Amson R, Telerman A (2008) Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15(11):1723–1733PubMedCrossRefGoogle Scholar
  137. Li F, Zhang D, Fujise K (2001) Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 276(50):47542–47549PubMedCrossRefGoogle Scholar
  138. Li S, Chen X, Ding Y, Liu X, Wang Y, He J (2011) Expression of translationally controlled tumor protein (TCTP) in the uterus of mice of early pregnancy and its possible significance during embryo implantation. Hum Reprod 26(11):2972–2980PubMedCrossRefGoogle Scholar
  139. Li D, Deng Z, Liu X, Qin B (2013) Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). J Plant Physiol 170(5):497–504PubMedCrossRefGoogle Scholar
  140. Li S, Chen M, Xiong Q, Zhang J, Cui Z, Ge F (2016) Characterization of the translationally controlled tumor protein (TCTP) interactome reveals novel binding partners in human cancer cells. J Proteome Res 15(10):3741–3751PubMedCrossRefGoogle Scholar
  141. Lin CJ, Robert F, Sukarieh R, Michnick S, Pelletier J (2010) The antidepressant sertraline inhibits translation initiation by curtailing mammalian target of rapamycin signaling. Cancer Res 70(8):3199–3208PubMedCrossRefGoogle Scholar
  142. Liu H, Peng H-W, Cheng Y-S, Yuan HS, Yang-Yen H-F (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25(8):3117–3126PubMedPubMedCentralCrossRefGoogle Scholar
  143. Liu LK, Wu HF, Guo ZR, Chen XJ, Yang D, Shu YQ, Zhang JN (2014) Targeted efficacy of dihydroartemisinin for translationally controlled protein expression in a lung cancer model. Asian Pac J Cancer Prev 15(6):2511–2515PubMedCrossRefGoogle Scholar
  144. Lo WY, Wang HJ, Chiu CW, Chen SF (2012) miR-27b-regulated TCTP as a novel plasma biomarker for oral cancer: from quantitative proteomics to post-transcriptional study. J Proteome 77:154–166CrossRefGoogle Scholar
  145. Lucas AT, Fu X, Liu J, Brannon MK, Yang J, Capelluto DG, Finkielstein CV (2014) Ligand binding reveals a role for heme in translationally-controlled tumor protein dimerization. PLoS One 9(11):e112823PubMedPubMedCentralCrossRefGoogle Scholar
  146. Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G, Rubartelli A, Garaci E (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 317(17):2479–2489PubMedCrossRefGoogle Scholar
  147. Lucibello M, Adanti S, Antelmi E, Dezi D, Ciafre S, Carcangiu ML, Zonfrillo M, Nicotera G, Sica L, De Braud F et al (2015) Phospho-TCTP as a therapeutic target of Dihydroartemisinin for aggressive breast cancer cells. Oncotarget 6(7):5275–5291PubMedPubMedCentralCrossRefGoogle Scholar
  148. Ma Q, Geng Y, Xu W, Wu Y, He F, Shu W, Huang M, Du H, Li M (2010) The role of translationally controlled tumor protein in tumor growth and metastasis of colon adenocarcinoma cells. J Proteome Res 9(1):40–49PubMedCrossRefGoogle Scholar
  149. MacDonald SM (2012a) Histamine releasing factor/translationally controlled tumor protein: history, functions and clinical implications. Open Allergy J 5:12–18CrossRefGoogle Scholar
  150. Macdonald SM (2012b) Potential role of histamine releasing factor (HRF) as a therapeutic target for treating asthma and allergy. J Asthma Allergy 5:51–59PubMedPubMedCentralCrossRefGoogle Scholar
  151. MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269(5224):688–690PubMedCrossRefGoogle Scholar
  152. MacDonald SM, Paznekas WA, Jabs EW (1999) Chromosomal localization of tumor protein, translationally-controlled 1 (TPT1) encoding the human histamine releasing factor (HRF) to 13q12-->q14. Cytogenet Cell Genet 84(1-2):128–129PubMedCrossRefGoogle Scholar
  153. MacDonald SM, Bhisutthibhan J, Shapiro TA, Rogerson SJ, Taylor TE, Tembo M, Langdon JM, Meshnick SR (2001) Immune mimicry in malaria: Plasmodium falciparum secretes a functional histamine-releasing factor homolog in vitro and in vivo. Proc Natl Acad Sci U S A 98(19):10829–10832PubMedPubMedCentralCrossRefGoogle Scholar
  154. Maeng J, Kim M, Lee K (2012) On the mechanisms underlying the secretion and export of translationally controlled tumor protein/histamine releasing factor (TCTP/HRF). Open Allergy J 5:33–40CrossRefGoogle Scholar
  155. Mak CH, Su KW, Ko RC (2001) Identification of some heat-induced genes of Trichinella spiralis. Parasitology 123(Pt 3):293–300PubMedGoogle Scholar
  156. Mak CH, Poon MW, Lun HM, Kwok PY, Ko RC (2007) Heat-inducible translationally controlled tumor protein of Trichinella pseudospiralis: cloning and regulation of gene expression. Parasitol Res 100(5):1105–1111PubMedCrossRefGoogle Scholar
  157. Meyuhas O (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267(21):6321–6330PubMedCrossRefGoogle Scholar
  158. Meyuhas O, Kahan T (2015) The race to decipher the top secrets of TOP mRNAs. Biochim Biophys Acta 1849(7):801–811PubMedCrossRefGoogle Scholar
  159. Meyvis Y, Houthoofd W, Visser A, Borgonie G, Gevaert K, Vercruysse J, Claerebout E, Geldhof P (2009) Analysis of the translationally controlled tumour protein in the nematodes Ostertagia ostertagi and Caenorhabditis elegans suggests a pivotal role in egg production. Int J Parasitol 39(11):1205–1213PubMedCrossRefGoogle Scholar
  160. Miao X, Chen YB, Xu SL, Zhao T, Liu JY, Li YR, Wang J, Zhang J, Guo GZ (2013) TCTP overexpression is associated with the development and progression of glioma. Tumour Biol 34(6):3357–3361PubMedCrossRefGoogle Scholar
  161. Nagano-Ito M, Banba A, Ichikawa S (2009) Functional cloning of genes that suppress oxidative stress-induced cell death: TCTP prevents hydrogen peroxide-induced cell death. FEBS Lett 583(8):1363–1367PubMedCrossRefGoogle Scholar
  162. Nupan B, Phongdara A, Saengsakda M, Leu JH, Lo CF (2011) Shrimp Pm-fortilin inhibits the expression of early and late genes of white spot syndrome virus (WSSV) in an insect cell model. Dev Comp Immunol 35(4):469–475PubMedCrossRefGoogle Scholar
  163. Oikawa K, Ohbayashi T, Mimura J, Fujii-Kuriyama Y, Teshima S, Rokutan K, Mukai K, Kuroda M (2002) Dioxin stimulates synthesis and secretion of IgE-dependent histamine-releasing factor. Biochem Biophys Res Commun 290(3):984–987PubMedCrossRefGoogle Scholar
  164. Panrat T, Sinthujaroen P, Nupan B, Wanna W, Tammi MT, Phongdara A (2012) Characterization of a novel binding protein for Fortilin/TCTP--component of a defense mechanism against viral infection in Penaeus monodon. PLoS One 7(3):e33291PubMedPubMedCentralCrossRefGoogle Scholar
  165. Pinkaew D, Le RJ, Chen Y, Eltorky M, Teng BB, Fujise K (2013) Fortilin reduces apoptosis in macrophages and promotes atherosclerosis. Am J Physiol Heart Circ Physiol 305(10):H1519–H1529PubMedPubMedCentralCrossRefGoogle Scholar
  166. Pinkaew D, Chattopadhyay A, King MD, Chunhacha P, Liu Z, Stevenson HL, Chen Y, Sinthujaroen P, McDougal OM, Fujise K (2017) Fortilin binds IRE1alpha and prevents ER stress from signaling apoptotic cell death. Nat Commun 8(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  167. Ramani P, Nash R, Sowa-Avugrah E, Rogers C (2015) High levels of polo-like kinase 1 and phosphorylated translationally controlled tumor protein indicate poor prognosis in neuroblastomas. J Neuro-Oncol 125(1):103–111CrossRefGoogle Scholar
  168. Rao KVN, Chen L, Gnanasekar M, Ramaswamy K (2002) Cloning and characterization of a calcium-binding, histamine-releasing protein from Schistosoma mansoni. J Biol Chem 277(34):31207–31213PubMedPubMedCentralCrossRefGoogle Scholar
  169. Rehmann H, Bruning M, Berghaus C, Schwarten M, Kohler K, Stocker H, Stoll R, Zwartkruis FJ, Wittinghofer A (2008) Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 582(20):3005–3010PubMedCrossRefGoogle Scholar
  170. Ren C, Chen T, Jiang X, Wang Y, Hu C (2014) The first characterization of gene structure and biological function for echinoderm translationally controlled tumor protein (TCTP). Fish Shellfish Immunol 41(2):137–146PubMedCrossRefGoogle Scholar
  171. Rho SB, Lee JH, Park MS, Byun HJ, Kang S, Seo SS, Kim JY, Park SY (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 585(1):29–35PubMedCrossRefGoogle Scholar
  172. Rid R, Simon-Nobbe B, Langdon J, Holler C, Wally V, Poll V, Ebner C, Hemmer W, Hawranek T, Lang R et al (2008) Cladosporium herbarum translationally controlled tumor protein (TCTP) is an IgE-binding antigen and is associated with disease severity. Mol Immunol 45(2):406–418PubMedCrossRefGoogle Scholar
  173. Rid R, Onder K, MacDonald S, Lang R, Hawranek T, Ebner C, Hemmer W, Richter K, Simon-Nobbe B, Breitenbach M (2009) Alternaria alternata TCTP, a novel cross-reactive ascomycete allergen. Mol Immunol 46(16):3476–3487PubMedCrossRefGoogle Scholar
  174. Rid R, Onder K, Trost A, Bauer J, Hintner H, Ritter M, Jakab M, Costa I, Reischl W, Richter K et al (2010) H2O2-dependent translocation of TCTP into the nucleus enables its interaction with VDR in human keratinocytes: TCTP as a further module in calcitriol signalling. J Steroid Biochem Mol Biol 118(1–2):29–40PubMedCrossRefGoogle Scholar
  175. Rinnerthaler M, Jarolim S, Heeren G, Palle E, Perju S, Klinger H, Bogengruber E, Madeo F, Braun RJ, Breitenbach-Koller L et al (2006) MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta 1757(5–6):631–638PubMedCrossRefGoogle Scholar
  176. Rinnerthaler M, Lejskova R, Grousl T, Stradalova V, Heeren G, Richter K, Breitenbach-Koller L, Malinsky J, Hasek J, Breitenbach M (2013) Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. PLoS One 8(10):e77791PubMedPubMedCentralCrossRefGoogle Scholar
  177. Roque CG, Wong HH, Lin JQ, Holt CE (2016) Tumor protein Tctp regulates axon development in the embryonic visual system. Development 143(7):1134–1148PubMedPubMedCentralCrossRefGoogle Scholar
  178. Sade YB, Boia-Ferreira M, Gremski LH, da Silveira RB, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS (2012) Molecular cloning, heterologous expression and functional characterization of a novel translationally-controlled tumor protein (TCTP) family member from Loxosceles intermedia (brown spider) venom. Int J Biochem Cell Biol 44(1):170–177PubMedCrossRefGoogle Scholar
  179. Sanchez JC, Schaller D, Ravier F, Golaz O, Jaccoud S, Belet M, Wilkins MR, James R, Deshusses J, Hochstrasser D (1997) Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18(1):150–155PubMedCrossRefGoogle Scholar
  180. Santa Brigida AB, dos Reis SP, Costa Cde N, Cardoso CM, Lima AM, de Souza CR (2014) Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Mol Biol Rep 41(3):1787–1797PubMedCrossRefGoogle Scholar
  181. Schmidt I, Fahling M, Nafz B, Skalweit A, Thiele BJ (2007) Induction of translationally controlled tumor protein (TCTP) by transcriptional and post-transcriptional mechanisms. FEBS J 274(20):5416–5424PubMedCrossRefGoogle Scholar
  182. Seo EJ, Efferth T (2016) Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 7(13):16818–16839PubMedPubMedCentralCrossRefGoogle Scholar
  183. Seo J, Maeng J, Kim HJ (2016) Translationally controlled tumor protein stimulates dopamine release from PC12 cells via Ca2+-independent phospholipase A(2) pathways. Int J Mol Sci 17(10)Google Scholar
  184. Shen JH, Qu CB, Chu HK, Cui MY, Wang YL, Sun YX, Song YD, Li G (2016) Shi FJ: siRNA targeting TCTP suppresses osteosarcoma cell growth and induces apoptosis in vitro and in vivo. Biotechnol Appl Biochem 63(1):5–14PubMedCrossRefGoogle Scholar
  185. Sinha P, Kohl S, Fischer J, Hutter G, Kern M, Kottgen E, Dietel M, Lage H, Schnolzer M, Schadendorf D (2000) Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis. Electrophoresis 21(14):3048–3057PubMedCrossRefGoogle Scholar
  186. Sinthujaroen P, Wanachottrakul N, Pinkaew D, Petersen JR, Phongdara A, Sheffield-Moore M, Fujise K (2014) Elevation of serum fortilin levels is specific for apoptosis and signifies cell death in vivo. BBA Clin 2:103–111PubMedPubMedCentralCrossRefGoogle Scholar
  187. Sirois I, Raymond MA, Brassard N, Cailhier JF, Fedjaev M, Hamelin K, Londono I, Bendayan M, Pshezhetsky AV, Hebert MJ (2011) Caspase-3-dependent export of TCTP: a novel pathway for antiapoptotic intercellular communication. Cell Death Differ 18(3):549–562PubMedCrossRefGoogle Scholar
  188. Slaby O, Sobkova K, Svoboda M, Garajova I, Fabian P, Hrstka R, Nenutil R, Sachlova M, Kocakova I, Michalek J et al (2009) Significant overexpression of Hsp110 gene during colorectal cancer progression. Oncol Rep 21(5):1235–1241PubMedCrossRefGoogle Scholar
  189. Sturzenbaum SR, Kille P, Morgan AJ (1998) Identification of heavy metal induced changes in the expression patterns of the translationally controlled tumour protein (TCTP) in the earthworm Lumbricus rubellus1. Biochim Biophys Acta 1398(3):294–304PubMedCrossRefGoogle Scholar
  190. Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G, Atkinson AR, Busso D, Poussin P, Marine JC et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15(8):1211–1220PubMedCrossRefGoogle Scholar
  191. Takahashi T, Yano T, Zhu J, Hwang GW, Naganuma A (2010) Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae. J Toxicol Sci 35(6):945–946PubMedCrossRefGoogle Scholar
  192. Tani T, Shimada H, Kato Y, Tsunoda Y (2007) Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Cloning Stem Cells 9(2):267–280PubMedCrossRefGoogle Scholar
  193. Tao JJ, Cao YR, Chen HW, Wei W, Li QT, Ma B, Zhang WK, Chen SY, Zhang JS (2015) Tobacco translationally controlled tumor protein interacts with ethylene receptor tobacco histidine kinase1 and enhances plant growth through promotion of cell proliferation. Plant Physiol 169(1):96–114PubMedPubMedCentralCrossRefGoogle Scholar
  194. Taulan M, Paquet F, Argiles A, Demaille J, Romey MC (2006) Comprehensive analysis of the renal transcriptional response to acute uranyl nitrate exposure. BMC Genomics 7:2PubMedPubMedCentralCrossRefGoogle Scholar
  195. Taylor KJ, Van TT, MacDonald SM, Meshnick SR, Fernley RT, Macreadie IG, Smooker PM (2015) Immunization of mice with Plasmodium TCTP delays establishment of Plasmodium infection. Parasite Immunol 37(1):23–31PubMedCrossRefGoogle Scholar
  196. Telerman A, Amson R (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 9(3):206–216PubMedCrossRefGoogle Scholar
  197. Teshima S, Rokutan K, Nikawa T, Kishi K (1998) Macrophage colony-stimulating factor stimulates synthesis and secretion of a mouse homolog of a human IgE-dependent histamine-releasing factor by macrophages in vitro and in vivo. J Immunol 161(11):6356–6366PubMedGoogle Scholar
  198. Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8(8):701–704PubMedCrossRefGoogle Scholar
  199. Thayanithy V (2005) Evolution and expression of translationally controlled tumour protein (TCTP) of fish. Comp Biochem Physiol B Biochem Mol Biol 142(1):8–17PubMedCrossRefGoogle Scholar
  200. Thebault S, Agez M, Chi X, Stojko J, Cura V, Telerman SB, Maillet L, Gautier F, Billas-Massobrio I, Birck C et al (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci Rep 6:19725PubMedPubMedCentralCrossRefGoogle Scholar
  201. Thiele H, Berger M, Lenzner C, Kuhn H, Thiele BJ (1998) Structure of the promoter and complete sequence of the gene coding for the rabbit translationally controlled tumor protein (TCTP) P23. Eur J Biochem 257(1):62–68PubMedCrossRefGoogle Scholar
  202. Thiele H, Berger M, Skalweit A, Thiele BJ (2000) Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur J Biochem 267(17):5473–5481PubMedCrossRefGoogle Scholar
  203. Thomas G, Thomas G (1986) Translational control of mRNA expression during the early mitogenic response in Swiss mouse 3T3 cells: identification of specific proteins. J Cell Biol 103(6 Pt 1):2137–2144PubMedCrossRefGoogle Scholar
  204. Thomas G, Thomas G, Luther H (1981) Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proc Natl Acad Sci U S A 78(9):5712–5716PubMedPubMedCentralCrossRefGoogle Scholar
  205. Tonganunt M, Nupan B, Saengsakda M, Suklour S, Wanna W, Senapin S, Chotigeat W, Phongdara A (2008) The role of Pm-fortilin in protecting shrimp from white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 25(5):633–637PubMedCrossRefGoogle Scholar
  206. Tsai MJ, Yang-Yen HF, Chiang MK, Wang MJ, Wu SS, Chen SH (2014) TCTP is essential for beta-cell proliferation and mass expansion during development and beta-cell adaptation in response to insulin resistance. Endocrinology 155(2):392–404PubMedCrossRefGoogle Scholar
  207. Tsarova K, Yarmola EG, Bubb MR (2011) Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). FEBS Lett 584(23):4756–4760CrossRefGoogle Scholar
  208. Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R, Telerman A (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci U S A 99(23):14976–14981PubMedPubMedCentralCrossRefGoogle Scholar
  209. Tuynder M, Fiucci G, Prieur S, Lespagnol A, Geant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J et al (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci U S A 101(43):15364–15369PubMedPubMedCentralCrossRefGoogle Scholar
  210. Vedadi M, Lew J, Artz J, Amani M, Zhao Y, Dong A, Wasney GA, Gao M, Hills T, Brokx S et al (2007) Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. Mol Biochem Parasitol 151(1):100–110PubMedCrossRefGoogle Scholar
  211. Vonakis BM, Gibbons S Jr, Sora R, Langdon JM, MacDonald SM (2001) Src homology 2 domain-containing inositol 5’ phosphatase is negatively associated with histamine release to human recombinant histamine-releasing factor in human basophils. J Allergy Clin Immunol 108(5):822–831PubMedCrossRefGoogle Scholar
  212. Vonakis BM, Macglashan DW Jr, Vilarino N, Langdon JM, Scott RS, MacDonald SM (2008) Distinct characteristics of signal transduction events by histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP)-induced priming and activation of human basophils. Blood 111(4):1789–1796PubMedPubMedCentralCrossRefGoogle Scholar
  213. Wang X, Fonseca BD, Tang H, Liu R, Elia A, Clemens MJ, Bommer UA, Proud CG (2008) Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 283(45):30482–30492PubMedPubMedCentralCrossRefGoogle Scholar
  214. Wang F, Shang Y, Yang L, Zhu C (2012) Comparative proteomic study and functional analysis of translationally controlled tumor protein in rice roots under Hg2+ stress. J Environ Sci (China) 24(12):2149–2158CrossRefGoogle Scholar
  215. Wang F, Hu C, Hua X, Song L, Xia Q (2013) Translationally controlled tumor protein, a dual functional protein involved in the immune response of the silkworm, Bombyx mori. PLoS One 8(7):e69284PubMedPubMedCentralCrossRefGoogle Scholar
  216. Wang J, Cao X, Sun J, Chai L, Huang Y, Tang X (2015) Transcriptional responses of earthworm (Eisenia fetida) exposed to naphthenic acids in soil. Environ Pollut 204:264–270PubMedCrossRefGoogle Scholar
  217. Wantke F, MacGlashan DW, Langdon JM, MacDonald SM (1999) The human recombinant histamine releasing factor: functional evidence that it does not bind to the IgE molecule. J Allergy Clin Immunol 103(4):642–648PubMedCrossRefGoogle Scholar
  218. Wu W, Wu B, Ye T, Huang H, Dai C, Yuan J, Wang W (2013) TCTP is a critical factor in shrimp immune response to virus infection. PLoS One 8(9):e74460PubMedPubMedCentralCrossRefGoogle Scholar
  219. Wu H, Gong W, Yao X, Wang J, Perrett S, Feng Y (2015) Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B. J Biol Chem 290(14):8694–8710PubMedCrossRefGoogle Scholar
  220. Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, Wang S, Geng Y, Li L, Xu W et al (2016) Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget 7(31):50057–50073PubMedPubMedCentralCrossRefGoogle Scholar
  221. Xu A, Bellamy AR, Taylor JA (1999) Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J 342(Pt 3):683–689PubMedPubMedCentralCrossRefGoogle Scholar
  222. Yagci M, Yegin ZA, Akyurek N, Kayhan H, Ozkurt ZN, Sucak GT, Haznedar R (2013) TCTP/HRF pathway and angiogenesis: a feasible intercourse in chronic lymphocytic leukemia. Leuk Res 37(6):665–670PubMedCrossRefGoogle Scholar
  223. Yamashita R, Suzuki Y, Takeuchi N, Wakaguri H, Ueda T, Sugano S, Nakai K (2008) Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics. Nucleic Acids Res 36(11):3707–3715PubMedPubMedCentralCrossRefGoogle Scholar
  224. Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M, Mirkovic D, Nguyen J, Wang H, Yang X-F (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788PubMedPubMedCentralCrossRefGoogle Scholar
  225. Yao Y, Jia XY, Tian HY, Jiang YX, Xu GJ, Qian QJ, Zhao FK (2009) Comparative proteomic analysis of colon cancer cells in response to oxaliplatin treatment. Biochim Biophys Acta 1794(10):1433–1440PubMedCrossRefGoogle Scholar
  226. Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22(17):6209–6221PubMedPubMedCentralCrossRefGoogle Scholar
  227. Yeh YC, Xie L, Langdon JM, Myers AC, Oh SY, Zhu Z, Macdonald SM (2010) The effects of overexpression of histamine releasing factor (HRF) in a transgenic mouse model. PLoS One 5(6):e11077PubMedPubMedCentralCrossRefGoogle Scholar
  228. Yenofsky R, Bergmann I, Brawerman G (1982) Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc Natl Acad Sci U S A 79(19):5876–5880PubMedPubMedCentralCrossRefGoogle Scholar
  229. Yenofsky R, Cereghini S, Krowczynska A, Brawerman G (1983) Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol Cell Biol 3(7):1197–1203PubMedPubMedCentralCrossRefGoogle Scholar
  230. Yoon T, Jung J, Kim M, Lee KM, Choi EC, Lee K (2000) Identification of the self-interaction of rat TCTP/IgE-dependent histamine-releasing factor using yeast two-hybrid system. Arch Biochem Biophys 384(2):379–382PubMedCrossRefGoogle Scholar
  231. Yoon T, Kim M, Lee K (2006) Inhibition of Na,K-ATPase-suppressive activity of translationally controlled tumor protein by sorting nexin 6. FEBS Lett 580(14):3558–3564PubMedCrossRefGoogle Scholar
  232. Yubero N, Esteso G, Cardona H, Morera L, Garrido JJ, Barbancho M (2009) Molecular cloning, expression analysis and chromosome localization of the Tpt1 gene coding for the pig translationally controlled tumor protein (TCTP). Mol Biol Rep 36(7):1957–1965PubMedCrossRefGoogle Scholar
  233. Zhang D, Li F, Weidner D, Mnjoyan ZH, Fujise K (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277(40):37430–37438PubMedCrossRefGoogle Scholar
  234. Zhang YJ, Dai Q, Sun DF, Xiong H, Tian XQ, Gao FH, Xu MH, Chen GQ, Han ZG, Fang JY (2009) mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol 16(9):2617–2628PubMedCrossRefGoogle Scholar
  235. Zhang J, de Toledo SM, Pandey BN, Guo G, Pain D, Li H, Azzam EI (2012) Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc Natl Acad Sci U S A 109(16):E926–E933PubMedPubMedCentralCrossRefGoogle Scholar
  236. Zhang F, Liu B, Wang Z, Yu XJ, Ni QX, Yang WT, Mukaida N, Li YY (2013) A novel regulatory mechanism of Pim-3 kinase stability and its involvement in pancreatic cancer progression. Mol Cancer Res 11(12):1508–1520PubMedCrossRefGoogle Scholar
  237. Zhu WL, Cheng HX, Han N, Liu DL, Zhu WX, Fan BL, Duan FL (2008) Messenger RNA expression of translationally controlled tumor protein (TCTP) in liver regeneration and cancer. Anticancer Res 28(3A):1575–1580PubMedGoogle Scholar
  238. Zobel-Thropp PA, Correa SM, Garb JE, Binford GJ (2014) Spit and venom from scytodes spiders: a diverse and distinct cocktail. J Proteome Res 13(2):817–835PubMedCrossRefGoogle Scholar
  239. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Medicine, Graduate MedicineUniversity of WollongongWollongongAustralia

Personalised recommendations